TheSodesa
- 224
- 7
Homework Statement
It's all in the title. Correct answer: pH = 7,20. K_a (HNO_2) = 4,0 \cdot 10^{-4}
Homework Equations
K_b = \dfrac{K_w}{K_a}
K_b = \dfrac{HB^+ \cdot OH^-}{B}
The Attempt at a Solution
NaNO2 fully dissolves in water giving 6,0 \cdot 10^{-4} M \, NO2^-. Now water forms an equilibrium with NO2- as it gives H+ to NO2-:
NO_2 ^- + H_2 O \leftrightharpoons HNO_2 + OH^-
<br /> \begin{bmatrix}<br /> c & NO_2^- & HNO_2 & OH^-\\<br /> \hline<br /> At \, start & 6 \cdot 10^{-4} & 0 & 0 \\<br /> At \, equilibrium & 6 \cdot 10^{-4}-x & x & x<br /> \end{bmatrix}<br />
Now
K_b = \dfrac{x^2}{6 \cdot 10^{-4}-x} \leftrightarrow x^2 + K_b x - 6K_b \cdot 10^{-4} = 0 \\<br /> <br /> \rightarrow x = \dfrac{-K_b \stackrel{+}{(-)} \sqrt{(K_b)^2 - 4(1)(-6K_b \cdot 10^{-4})}}{2}<br /> = 1,22462 \cdot 10^{-7} = [HO^-]\\<br /> <br /> \rightarrow pH = 14 - pOH = 14 + lg[OH^-] = 7,088<br />
This is not the correct answer (7,20). What am I missing? Water? I only know the iterative process for determining the correct [H+] for low concentrations H+ (when water has an effect on the result as Zumdahl describes it), not OH-.
Can someone point me in the right direction?
Last edited: