MHB What is the solution to POTW #264 for Jan 23, 2018?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The problem of the week involves proving that for a compact Lie group G and a finite-dimensional representation V, the integral of the character χ over G equals the dimension of the G-invariant subspace V^G. No participants provided solutions this week, indicating a lack of engagement with the problem. The original poster has shared their own solution for reference. The discussion emphasizes the relationship between group representations and invariant subspaces. Overall, the thread highlights the challenge of the problem and the importance of understanding character theory in representation theory.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Let $G$ be a compact Lie group, and let $V$ be a finite-dimensional representation of $G$. Prove that if $\chi$ is the character associated with $V$, then $\int_G \chi(g)\, dg = \operatorname{dim}(V^G)$ where $V^G\subset V$ is the subspace of $G$-invariants of $V$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week’s problem. You can read my solution below.
Consider the linear operator $T$ on $V$ given by $$Tv= \int_G gv \, dg$$
By invariance of the Haar measure on $G$, $Th = hT$ for all $h\in G$, so $T$ is $G$-equivariant. Furthermore, $T$ projects $V$ onto $V^G$. To see this, note that if $w = Tv$, then for every $h\in G$ $$hw = hTv = T(hv) = \int_G (hg)v\, dg = \int_G gv\, dg = Tv = w$$ showing that $w\in V^G$. On the other hand if $w\in V^G$, then $Tw = w$ since the Haar measure of $G$ is $1$. So $T$ projects onto $V^G$; consequently the trace of $T$ is the rank of $T$, which is $\operatorname{dim}(V^G)$. Thus, if $\rho : G \to \operatorname{Aut}(V)$ is the representation mapping, $$\int_G \chi(g)\, dg = \int_G \operatorname{trace}[\rho(g)]\, dg = \operatorname{trace}(T) = \operatorname{dim}(V^G)\quad\blacksquare$$