MHB What is the solution to the ODE with coefficients involving x and y?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
The discussion focuses on solving the ordinary differential equation (ODE) given by (y^3 + xy^2 + y) dx + (x^3 + x^2y + x) dy = 0. Participants are encouraged to refer to the Problem of the Week (POTW) guidelines for submission procedures. The ODE is sourced from Tenenbaum and Pollard's Example 10.741. No responses have been provided yet for this week's problem. The solution will be posted subsequently.
Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW (I will identify the problem source when I post the solution):

-----

Solve the ODE $(y^3+xy^2+y) \, dx + (x^3+x^2y+x) \, dy=0$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
No one answered this week's POTW, which is Example 10.741 on page 87 in Tenenbaum and Pollard. The solution follows:

Comparing the ODE with $P(x,y) \, dx+Q(x,y) \, dy=0$, we see that $P(x,y)=y^3+xy^2+y$ and $Q(x,y)=x^3+x^2y+x$. Therefore,
$$\pd{P(x,y)}{y}=3y^2+2xy+1, \qquad \pd{Q(x,y)}{x}=3x^2+2xy+1,$$
which is not exact. We define
\begin{align*}
u&=xy \\
F(u)&=\frac{\pd{P(x,y)}{y}-\pd{Q(x,y)}{x}}{y Q(x,y)-x P(x,y)} \\
&=\frac{3y^2+2xy+1-3x^2-2xy-1}{x^3y+x^2y^2+xy-xy^3-x^2y^2-xy} \\
&=-\frac{3(x^2-y^2)}{xy(x^2-y^2)} \\
&=-\frac3u, \quad x\not=y.
\end{align*}
Therefore, the integrating factor is $\displaystyle h(u)=e^{\int (-3/u) \, du}=e^{-3 \ln|u|}=u^{-3}=(xy)^{-3}.$ Multiplying the ODE through by this factor yields
$$\frac{1}{x^3y^3}(y^3+xy^2+y) \, dx+\frac{1}{x^3y^3}(x^3+x^2y+x) \, dy=0 \qquad \implies \qquad \left(x^{-3}+x^{-2}y^{-1}+x^{-3}y^{-2}\right) dx + \left(y^{-3}+x^{-1}y^{-2}+x^{-2}y^{-3}\right) dy=0.
$$
Re-defining $P(x,y)=x^{-3}+x^{-2}y^{-1}+x^{-3}y^{-2}$ and $Q(x,y)=y^{-3}+x^{-1}y^{-2}+x^{-2}y^{-3}$ yields
$$\pd{P(x,y)}{y}=-x^{-2}y^{-2}-2x^{-3}y^{-3} , \qquad \pd{Q(x,y)}{x}=-x^{-2}y^{-2}-2x^{-3}y^{-3},$$
which is exact as required. To solve, we go through the usual steps:
$$f(x,y)=\int P(x,y) \, dx+R(y)=\frac{x^{-2}}{-2}+\frac{x^{-1}y^{-1}}{-1}+\frac{x^{-2}y^{-2}}{-2}+R(y)=-\frac12 x^{-2}-x^{-1}y^{-1}-\frac12 x^{-2}y^{-2}+R(y).$$
Differentiating w.r.t. $y$ yields
$$\pd{f(x,y)}{y}=x^{-1}y^{-2}+x^{-2}y^{-3}+R'(y)=Q(x,y)=y^{-3}+x^{-1}y^{-2}+x^{-2}y^{-3}.$$
By inspection, $R'(y)=y^{-3},$ implying that $R(y)=-\dfrac{y^{-2}}{2}.$ Hence, the solution is
$$-\frac12 x^{-2}-x^{-1}y^{-1}-\frac12 x^{-2}y^{-2}-\dfrac{y^{-2}}{2}=C, \qquad \text{or} \qquad \frac{1}{x^2}+\frac{2}{xy}+\frac{1}{x^2 y^2}+\frac{1}{y^2}=C,$$
where we have absorbed a $-2$ into the $C$.
 

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
1
Views
2K