What is the solution to this week's POTW?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

This week's Problem of the Week (POTW) involves demonstrating that if $\phi : A \to B$ is a local homeomorphism from a compact space $A$ to a connected Hausdorff space $B$, then $\phi$ is surjective and the fibers of $\phi$ over the points of $B$ are finite sets. The solutions provided by forum members Opalg and GJA confirm these conclusions through rigorous mathematical reasoning. Key concepts utilized include properties of local homeomorphisms, compactness, and the characteristics of connected Hausdorff spaces.

PREREQUISITES
  • Understanding of local homeomorphisms in topology
  • Familiarity with compact spaces and their properties
  • Knowledge of connected Hausdorff spaces
  • Basic principles of fiber spaces in topology
NEXT STEPS
  • Study the properties of local homeomorphisms in detail
  • Explore the implications of compactness in topological spaces
  • Investigate the characteristics of connected Hausdorff spaces
  • Learn about fiber spaces and their applications in topology
USEFUL FOR

Mathematicians, particularly those specializing in topology, educators teaching advanced mathematics, and students preparing for higher-level topology courses will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
If $\phi : A \to B$ is a local homeomorphism from a compact space $A$ to a connected Hausdorff space $B$, show that $\phi$ is surjective and the fibers of $\phi$ over the points of $B$ are finite sets.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved correctly by Opalg and GJA. You can read GJA's solution below.
Begin Proof

To prove that $\phi$ is onto, we will show that $\phi(A)$ is both a closed and open (i.e., clopen) subset of the connected set $B$.

Proving $\phi(A)$ is closed

Since $\phi:A\rightarrow B$ is a local homeomorphism, it is necessarily continuous. It then follows that $\phi(A)$ is a compact subset of $B$ since the continuous image of a compact set is compact. As compact subsets of Hausdorff spaces are necessarily closed, we have that $\phi(A)$ is a closed subset of $B$.

Proving $\phi(A)$ is open

Using the local homeomorphism property of $\phi$, there is a collection of open sets $\{V_{x}\}_{x\in A}$ such that $\phi|_{V_{x}}$ is a homeomorphism of $V_{x}$ onto $\phi(V_{x})$. In particular, $\phi(V_{x})$ is an open subset of $B$ for each $x\in A.$ Using the fact that functions distribute over unions and that the union of open sets is open, we have that

$\phi(A)=\phi\left(\cup_{x\in A} V_{x} \right)=\cup_{x\in A} \phi(V_{x})$

is open in $B$.

Since $B$ is connected, it follows from the clopenness of $\phi(A)$ that $\phi(A)=B;$ i.e., $\phi:A\rightarrow B$ is surjective.

Proving the fibers of $\phi$ are finite

Let $p\in B$. Since $B$ is Hausdorff, $\{p\}$ is a closed subset of $B$. Since $\phi$ is continuous, $K=\phi^{-1}(\{p\})$ is closed in $A$. As a closed subset of the compact set $A$, $K$ is compact.

Now, the key to this portion of the argument is to note that the open sets involved in the local homeomorphism property of $\phi$ can only intersect $K$ at a single point. That is, let $x\in K$ and, as above, let $V_{x}$ denote an open set of $A$ containing $x$ coming from the local homeomorphism property of $\phi$. Then $V_{x}\cap\left( K\backslash\{x\}\right)=\emptyset$ for, otherwise, if $q\in V_{x}\cap\left( K\backslash\{x\}\right)$, then $\phi(q)=\phi(x)=p$ by definition of $K$, contradicting the homeomorphism property (i.e., failure to be injective) of $\phi|_{V_{x}}.$ Having noted this, if $K$ were infinite, then $\{V_{x}\}_{x\in K}$ would be an infinite open cover of $K$ that does not admit a finite subcover (since $V_{x}$ intersects $K$ at $x$ only), contradicting the fact that $K$ is a compact subset of $A$. Hence, $K=\phi^{-1}(\{p\})$ is finite. Since $p\in B$ was chosen arbitrarily, the fibers of $\phi$ are finite subsets of $A$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K