What is the sum of coefficients in a polynomial expansion?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The sum of the coefficients in the polynomial expansion of \( S=(x^3-x^2+x+3)^{2015} \) can be evaluated by substituting \( x=1 \) into the polynomial. This results in \( S(1) = (1^3 - 1^2 + 1 + 3)^{2015} = 4^{2015} \). The coefficients of even powers can be found by calculating \( \frac{S(1) + S(-1)}{2} \), leading to the conclusion that the sum of the coefficients \( a_0 + a_2 + a_4 + \cdots + a_{6044} = \frac{4^{2015} + 0}{2} = 2^{4030} \).

PREREQUISITES
  • Understanding of polynomial expansions and binomial theorem
  • Familiarity with evaluating polynomials at specific values
  • Knowledge of even and odd functions
  • Basic combinatorial mathematics
NEXT STEPS
  • Study polynomial expansion techniques in algebra
  • Learn about the binomial theorem and its applications
  • Explore properties of even and odd functions in mathematics
  • Investigate combinatorial identities related to polynomial coefficients
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic concepts and polynomial theory.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $S=(x^3-x^2+x+3)^{2015}=a_0+a_1x+a_2x^2+a_3x^3+\cdots+a_{6044}x^{6044}+a_{6045}x^{6045}$, where $a_0,\,a_1,\,a_2,\cdots,a_{2015}$ are all integers.

Evaluate $a_0+a_2+a_4+\cdots+a_{6042}+a_{6044}$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Last edited:
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. lfdahl
2. laura123

Here's lfdahl's solution:
Given:
\[S(x) = \left ( x^3-x^2+x+3 \right )^{2015}= a_0+a_1x+a_2x^2+...+a_{6044}x^{6044}+a_{6045}x^{6045}\]

Obviously: $S(-1) = 0$

Let $S_0 = a_0+a_2+a_4+...+a_{6044}$ and $S_1 = a_1+a_3+a_5+...+a_{6045}$

Then:

\[S(-1) = S_0-S_1=0 \: \: \: or \: \: \: S_0=S_1\]

\[S(1) = 4^{2015}= S_0+S_1=2S_0\: \: \: or \: \: \: S_0=\frac{1}{2}\cdot 4^{2015} = 2^{4029}\]
Here's laura123's solution:
Let be $f(x)=(x^3-x^2+x+3)^{2015}$ then $f(1)=(1^3-1^2+1+3)^{2015}=4^{2015}$ and $f(-1)=[(-1)^3-(-1)^2-1+3]^{2015}=0$.
Furthermore
$\dfrac{f(1)+f(-1)}{2}$=$\dfrac{(a_0+a_1+a_2+a_3+\cdots+a_{6044}+a_{6045})+(a_0-a_1+a_2-a_3+\cdots+a_{6044}-a_{6045})}{2}$=$a_0+a_2+a_4+\cdots+a_{6042}+a_{6044}$
then
$a_0+a_2+a_4+\cdots+a_{6042}+a_{6044}=\dfrac{f(1)+f(-1)}{2}=\dfrac{4^{2015}}{2}=\dfrac{2^{4030}}{2}=2^{4029}$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K