What is the Sum of Cosine Products in POTW #141?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The discussion focuses on evaluating the sum of cosine products, specifically the expression $\cos 1^{\circ}\cos 2^{\circ}+\cos 2^{\circ}\cos 3^{\circ}+\cdots+\cos 88^{\circ}\cos 89^{\circ}$. Participants, including greg1313, MarkFL, lfdahl, and kaliprasad, provided correct solutions to the problem. MarkFL's solution is highlighted as a key contribution, showcasing effective techniques for simplifying trigonometric sums.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with summation notation
  • Basic knowledge of calculus concepts
  • Experience with mathematical problem-solving techniques
NEXT STEPS
  • Study trigonometric product-to-sum identities
  • Explore advanced techniques in summation of series
  • Learn about the application of calculus in trigonometric evaluations
  • Investigate similar problems in mathematical competitions
USEFUL FOR

Mathematicians, students preparing for math competitions, and anyone interested in advanced trigonometric problem-solving techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\cos 1^{\circ}\cos 2^{\circ}+\cos 2^{\circ}\cos 3^{\circ}+\cdots+\cos 88^{\circ}\cos 89^{\circ}$.
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. greg1313
2. MarkFL
3. lfdahl
3. kaliprasad

Solution from MarkFL:
Using the product to sum identity:

$$\cos(\alpha)\cos(\beta)=\frac{\cos(\alpha-\beta)+\cos(\alpha+\beta)}{2}$$

And the negative angle identity for cosine (cosine is an even function):

$$\cos(-x)=\cos(x)$$

And then factoring, the sum becomes:

$$\frac{\cos\left(1^{\circ}\right)}{2}\cdot\sum_{k=1}^{88}(1)+\frac{1}{2}\left(\cos\left(3^{\circ}\right)+\cos\left(5^{\circ}\right)+\cdots+\cos\left(177^{\circ}\right)\right)$$

Next, use $$\sum_{k=1}^n(1)=n$$ and then group as follows:

$$44\cos\left(1^{\circ}\right)+\left(\left(\cos\left(3^{\circ}\right)+\cos\left(177^{\circ}\right)\right)+\left(\cos\left(5^{\circ}\right)+\cos\left(175^{\circ}\right)\right)+\cdots+\left(\cos\left(89^{\circ}\right)+\cos\left(91^{\circ}\right)\right)\right)$$

Now, applying the sum to product identity:

$$\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

And using the fact that:

$$\cos\left(90^{\circ}\right)=0$$

We obtain:

$$44\cos\left(1^{\circ}\right)+\left(0+0+\cdots+0\right)=44\cos\left(1^{\circ}\right)$$

Solution from kaliprasad:
we have $2 \cos(x) \cos (y) = \cos (x+y) + \cos (y-x)$

so $2 (\cos\,1^\circ \cos\,2^\circ ) = \cos\,3^\circ + \cos\,1^\circ$

$2 (\cos\,2^\circ \cos\,3^\circ ) = \cos\,5^\circ + \cos\,1^\circ$

so on till

$2 (\cos\,44^\circ \cos\,45^\circ ) = \cos\,89^\circ + \cos\,1^\circ$

$2 (\cos\,45^\circ\cos\,46^\circ ) = \cos\,91^\circ + \cos\,1^\circ$

or $2 (\cos\,45^\circ \cos\,46^\circ ) = - \cos\,89^\circ + \cos\,1^\circ$

so on till

$2 (\cos\,88^\circ \cos\,89^\circ ) = - \cos\,3^\circ + \cos\,1^\circ$

on adding above for each positive term in 1st half for the first term there is a -ve term for the second half and we are left wth 88 times $\cos\,1^\circ$

so $2( \cos\,1^\circ \cos\,2^\circ + \cos\,2^\circ \cos\,3^\circ +\cdots \cos\,88^\circ \cos\,89^\circ) = 88 \cos\,1^\circ$

or $ \cos\,1^\circ \cos\,2^\circ + \cos\,2^\circ \cos\,3^\circ +\cdots \cos\,88^\circ \cos\,89^\circ = 44 \cos\,1^\circ$

hence the given expression is $44 \cos\,1^\circ$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K