MHB What is the Sum of Cosine Products in POTW #141?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating the sum of cosine products, specifically $\cos 1^{\circ}\cos 2^{\circ}+\cos 2^{\circ}\cos 3^{\circ}+\cdots+\cos 88^{\circ}\cos 89^{\circ}$. Members contributed various solutions, with notable correct answers from greg1313, MarkFL, lfdahl, and kaliprasad. MarkFL and kaliprasad provided detailed solutions that were acknowledged for their clarity and correctness. The thread emphasizes the importance of understanding trigonometric identities in solving such problems. Overall, the evaluation of this cosine product sum showcases collaborative problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\cos 1^{\circ}\cos 2^{\circ}+\cos 2^{\circ}\cos 3^{\circ}+\cdots+\cos 88^{\circ}\cos 89^{\circ}$.
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions::)

1. greg1313
2. MarkFL
3. lfdahl
3. kaliprasad

Solution from MarkFL:
Using the product to sum identity:

$$\cos(\alpha)\cos(\beta)=\frac{\cos(\alpha-\beta)+\cos(\alpha+\beta)}{2}$$

And the negative angle identity for cosine (cosine is an even function):

$$\cos(-x)=\cos(x)$$

And then factoring, the sum becomes:

$$\frac{\cos\left(1^{\circ}\right)}{2}\cdot\sum_{k=1}^{88}(1)+\frac{1}{2}\left(\cos\left(3^{\circ}\right)+\cos\left(5^{\circ}\right)+\cdots+\cos\left(177^{\circ}\right)\right)$$

Next, use $$\sum_{k=1}^n(1)=n$$ and then group as follows:

$$44\cos\left(1^{\circ}\right)+\left(\left(\cos\left(3^{\circ}\right)+\cos\left(177^{\circ}\right)\right)+\left(\cos\left(5^{\circ}\right)+\cos\left(175^{\circ}\right)\right)+\cdots+\left(\cos\left(89^{\circ}\right)+\cos\left(91^{\circ}\right)\right)\right)$$

Now, applying the sum to product identity:

$$\cos(\alpha)+\cos(\beta)=2\cos\left(\frac{\alpha+\beta}{2}\right)\cos\left(\frac{\alpha-\beta}{2}\right)$$

And using the fact that:

$$\cos\left(90^{\circ}\right)=0$$

We obtain:

$$44\cos\left(1^{\circ}\right)+\left(0+0+\cdots+0\right)=44\cos\left(1^{\circ}\right)$$

Solution from kaliprasad:
we have $2 \cos(x) \cos (y) = \cos (x+y) + \cos (y-x)$

so $2 (\cos\,1^\circ \cos\,2^\circ ) = \cos\,3^\circ + \cos\,1^\circ$

$2 (\cos\,2^\circ \cos\,3^\circ ) = \cos\,5^\circ + \cos\,1^\circ$

so on till

$2 (\cos\,44^\circ \cos\,45^\circ ) = \cos\,89^\circ + \cos\,1^\circ$

$2 (\cos\,45^\circ\cos\,46^\circ ) = \cos\,91^\circ + \cos\,1^\circ$

or $2 (\cos\,45^\circ \cos\,46^\circ ) = - \cos\,89^\circ + \cos\,1^\circ$

so on till

$2 (\cos\,88^\circ \cos\,89^\circ ) = - \cos\,3^\circ + \cos\,1^\circ$

on adding above for each positive term in 1st half for the first term there is a -ve term for the second half and we are left wth 88 times $\cos\,1^\circ$

so $2( \cos\,1^\circ \cos\,2^\circ + \cos\,2^\circ \cos\,3^\circ +\cdots \cos\,88^\circ \cos\,89^\circ) = 88 \cos\,1^\circ$

or $ \cos\,1^\circ \cos\,2^\circ + \cos\,2^\circ \cos\,3^\circ +\cdots \cos\,88^\circ \cos\,89^\circ = 44 \cos\,1^\circ$

hence the given expression is $44 \cos\,1^\circ$
 
Back
Top