MHB Why Can Effectively Enumerated Theories Not Be Effectively Decidable?

  • Thread starter Thread starter agapito
  • Start date Start date
Click For Summary
An effectively axiomatized theory T allows for the effective enumeration of its well-formed formulas (wff's), but it cannot be effectively decidable due to the lack of an algorithm to determine whether a formula belongs to T. While the set of all formulas in a first-order language is decidable, if a formula A is not in T, it may never be proved by any enumerated derivation, leaving uncertainty about its status. Church's theorem further establishes that predicate calculus is undecidable, reinforcing this limitation. However, if T is consistent, effectively axiomatized, and complete, it becomes decidable, allowing for a definitive determination of A's membership in T. This distinction highlights the complexities of decidability in mathematical logic.
agapito
Messages
46
Reaction score
0
Given an arbitrary effectively axiomatized theory T, the set of its wff's can be effectively enumerated. Why can it not also be effectively decidable? Under the definition of "effectively axiomatized theory" it is effectively decidable what is a wff of its language. Thus my question, thanks for all help.
 
Physics news on Phys.org
agapito said:
Given an arbitrary effectively axiomatized theory T, the set of its wff's can be effectively enumerated. Why can it not also be effectively decidable? Under the definition of "effectively axiomatized theory" it is effectively decidable what is a wff of its language.
I assume a theory $T$ is called effectively axiomatized if its set of axioms is decidable. (The following argument does not change if the set of axioms is only enumerable.) Then indeed $T$ is enumerable. We can systematically construct all derivations, and every formula in $T$ turns out to be the last formula of some derivation. It is also true that the set of all formulas in the given first-order language, whether in or outside $T$, is decidable. However, there is no a priori algorithm to determine whether a formula is in $T$. Namely, if a formula $A$ is not in $T$, then it is never proved by any derivation we enumerate, but we can not be sure that this is the case, i.e., that some future derivation does not prove it. And, as Church's theorem shows, predicate calculus is undecidable.

Note that if $T$ is consistent, effectively axiomatized and complete, which means that $A\in T$ or $\not A\in T$ for every formula $A$ in the language, then $T$ is decidable. Asked whether $A\in T$, we search through all derivations and will eventually encounter either $A$ or $\neg A$ because one or the other is in $T$. If $\neg A\in T$, then $A\notin T$ due to consistency.

Does this help?
 
Evgeny.Makarov said:
I assume a theory $T$ is called effectively axiomatized if its set of axioms is decidable. (The following argument does not change if the set of axioms is only enumerable.) Then indeed $T$ is enumerable. We can systematically construct all derivations, and every formula in $T$ turns out to be the last formula of some derivation. It is also true that the set of all formulas in the given first-order language, whether in or outside $T$, is decidable. However, there is no a priori algorithm to determine whether a formula is in $T$. Namely, if a formula $A$ is not in $T$, then it is never proved by any derivation we enumerate, but we can not be sure that this is the case, i.e., that some future derivation does not prove it. And, as Church's theorem shows, predicate calculus is undecidable.

Note that if $T$ is consistent, effectively axiomatized and complete, which means that $A\in T$ or $\not A\in T$ for every formula $A$ in the language, then $T$ is decidable. Asked whether $A\in T$, we search through all derivations and will eventually encounter either $A$ or $\neg A$ because one or the other is in $T$. If $\neg A\in T$, then $A\notin T$ due to consistency.

Does this help?

Very helpful indeed, I appreciate it.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 16 ·
Replies
16
Views
3K
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
4
Views
2K
  • · Replies 51 ·
2
Replies
51
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K