MHB Why Can Effectively Enumerated Theories Not Be Effectively Decidable?

  • Thread starter Thread starter agapito
  • Start date Start date
agapito
Messages
46
Reaction score
0
Given an arbitrary effectively axiomatized theory T, the set of its wff's can be effectively enumerated. Why can it not also be effectively decidable? Under the definition of "effectively axiomatized theory" it is effectively decidable what is a wff of its language. Thus my question, thanks for all help.
 
Physics news on Phys.org
agapito said:
Given an arbitrary effectively axiomatized theory T, the set of its wff's can be effectively enumerated. Why can it not also be effectively decidable? Under the definition of "effectively axiomatized theory" it is effectively decidable what is a wff of its language.
I assume a theory $T$ is called effectively axiomatized if its set of axioms is decidable. (The following argument does not change if the set of axioms is only enumerable.) Then indeed $T$ is enumerable. We can systematically construct all derivations, and every formula in $T$ turns out to be the last formula of some derivation. It is also true that the set of all formulas in the given first-order language, whether in or outside $T$, is decidable. However, there is no a priori algorithm to determine whether a formula is in $T$. Namely, if a formula $A$ is not in $T$, then it is never proved by any derivation we enumerate, but we can not be sure that this is the case, i.e., that some future derivation does not prove it. And, as Church's theorem shows, predicate calculus is undecidable.

Note that if $T$ is consistent, effectively axiomatized and complete, which means that $A\in T$ or $\not A\in T$ for every formula $A$ in the language, then $T$ is decidable. Asked whether $A\in T$, we search through all derivations and will eventually encounter either $A$ or $\neg A$ because one or the other is in $T$. If $\neg A\in T$, then $A\notin T$ due to consistency.

Does this help?
 
Evgeny.Makarov said:
I assume a theory $T$ is called effectively axiomatized if its set of axioms is decidable. (The following argument does not change if the set of axioms is only enumerable.) Then indeed $T$ is enumerable. We can systematically construct all derivations, and every formula in $T$ turns out to be the last formula of some derivation. It is also true that the set of all formulas in the given first-order language, whether in or outside $T$, is decidable. However, there is no a priori algorithm to determine whether a formula is in $T$. Namely, if a formula $A$ is not in $T$, then it is never proved by any derivation we enumerate, but we can not be sure that this is the case, i.e., that some future derivation does not prove it. And, as Church's theorem shows, predicate calculus is undecidable.

Note that if $T$ is consistent, effectively axiomatized and complete, which means that $A\in T$ or $\not A\in T$ for every formula $A$ in the language, then $T$ is decidable. Asked whether $A\in T$, we search through all derivations and will eventually encounter either $A$ or $\neg A$ because one or the other is in $T$. If $\neg A\in T$, then $A\notin T$ due to consistency.

Does this help?

Very helpful indeed, I appreciate it.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top