- #1

- 466

- 18

http://i.imgur.com/JgpJp03.png

I've done the Cayley table for the group above and can't find it in any of the group encyclopedias online. I can post it too if you want, but I'll tell you this:

It is a non abelian group of order 8 with two generators (a,g) such that a^4=Identity and g^4=identity. Plus, it only has three self inverses (apart from the identity).

No group seems to satisfy this. Anyone knows which group I'm talking about?

Should I post the Cayley table I've done too?

edit:

And here is the Cayley table http://i.imgur.com/VKJr18F.jpg

I've done the Cayley table for the group above and can't find it in any of the group encyclopedias online. I can post it too if you want, but I'll tell you this:

It is a non abelian group of order 8 with two generators (a,g) such that a^4=Identity and g^4=identity. Plus, it only has three self inverses (apart from the identity).

No group seems to satisfy this. Anyone knows which group I'm talking about?

Should I post the Cayley table I've done too?

edit:

And here is the Cayley table http://i.imgur.com/VKJr18F.jpg

Last edited: