MHB Why Choose This Function for Solving PDEs?

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion focuses on solving a partial differential equation (PDE) with specific boundary conditions. The function \( v \) is introduced to transform the original problem into one with zero boundary conditions, simplifying the solution process. By defining \( v(t,x) = u(t,x) - \left(1 - \frac{x}{\pi}\right)t^3 \), the boundaries are adjusted to meet the requirements for applying Fourier sine series. The choice of linear functions for \( A(x) \) and \( B(x) \) ensures that the boundary conditions are satisfied. This method allows for a more straightforward approach to finding the solution \( u(t,x) \).
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

I am looking at the following exercise:

Find the solution $u(t,x)$ of the problem

$$u_t-u_{xx}=2 \sin{x} \cos{x}+ 3\left( 1-\frac{x}{\pi}\right)t^2, t>0, x \in (0,\pi) \\ u(0,x)=3 \sin{x}, x \in (0,\pi) \\ u(t,0)=t^3, u(t, \pi)=0, t>0$$

At the suggested solution, it is stated that the boundaries are non-zero, so we want to set them equal to $0$.

We set $v=u-\left( 1-\frac{x}{\pi}\right) t^3-\frac{x}{\pi} \cdot 0 \Rightarrow v=u-t^3+t^3 \frac{x}{\pi}$.

Could you explain to me why we take this $v$? Is there a formula that we use that enables us to solve the problem? 🧐
 
Physics news on Phys.org
evinda said:
At the suggested solution, it is stated that the boundaries are non-zero, so we want to set them equal to $0$.

We set $v=u-\left( 1-\frac{x}{\pi}\right) t^3-\frac{x}{\pi} \cdot 0 \Rightarrow v=u-t^3+t^3 \frac{x}{\pi}$.

Could you explain to me why we take this $v$? Is there a formula that we use that enables us to solve the problem?
Hey evinda!

$v$ is selected so that $v(t,0)=0$ and $v(t,\pi)=0$ to simplify the problem.
Then, if we can find a solution for $v$, we can also find a solution for $u$. 🤔

We can achieve that if we pick $v(t,0)=u(t,0)-t^3$ and $v(t,\pi)=u(t,0)-0$.
Now we still need to introduce $x$ such that both conditions are satisfied.
To do so, we pick $v(t,x)=u(t,x)-A(x)\cdot t^3-B(x)\cdot 0$, where $A(x), B(x)$ are functions of $x$ such that $A(0)=1$ and $A(\pi)=0$, and $B(0)=0$ and $B(\pi)=1$.
Simplest $A$ and $B$ are the linear functions $A(x)=1-\frac x\pi$ respectively $B(x)=\frac x\pi$.
Substitute to find $v(t,x)=u(t,x)-\left(1-\frac x\pi\right)\cdot t^3-\frac x\pi\cdot 0$. 🤔
 
In particular, if we have boundary conditions, u(0, t)= 0 and u(L, t)= 0 we can use a "Fourier sine series", $\sum_{n=0}^\infty A_n(t) sin(\frac{n\pi}{L}x)$ rather that the more general (and harder) "Fourier series" with both sine and cosine.
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 11 ·
Replies
11
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
0
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K