MHB Why is the integration result not -xe^-x - e^-x?

  • Thread starter Thread starter Cadbury
  • Start date Start date
  • Tags Tags
    Integrate
Cadbury
Messages
11
Reaction score
0
View attachment 3778

So v' is the one to be integrated and v is the answer,
why is it not -xe^-x - e^-x ? :confused:

Thank you very much!
 

Attachments

  • a.png
    a.png
    970 bytes · Views: 103
Physics news on Phys.org
Hello Cadbury. What is the result of $$\int x e^{-x} \, dx?$$
 
Fantini said:
Hello Cadbury. What is the result of $$\int x e^{-x} \, dx?$$

Oh, I get it now haha, first I have to use integration by parts where u= x, dv= e^ -x then uv - integral(vdu) then after

-xe^-x +e^-x - e^-x = -xe^-x hehe
 
It's even easier if you write the first DE as $\displaystyle \begin{align*} y' = \left( x - 1 \right) \, \mathrm{e}^{-x} \end{align*}$, you can still apply integration by parts and this time you don't have to do two separate integrals...
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K