Thanks Diazona. I just wanted to double check that, as I have never seen an example of that occurring!
Also, since I have a c [tex]\rightarrow[/tex] u and W^{+} [tex]\rightarrow[/tex] u + antis I have two vertices for the decay D^{0} [tex]\rightarrow[/tex] K^{+} + [tex]\pi[/tex]^{}. This means the total decay rate will depend on the square of the coupling constants g_{cu} and g_{uantis} multiplied togther.
But because of the CKM matrix g_{cu} = g_{w}sin[tex]\vartheta[/tex]_{c} and g_{uantis} = g_{w}sin[tex]\vartheta[/tex]_{c}. Where g_{w} is given to be 10^5
So the total decay rate for D^{0} [tex]\rightarrow[/tex] K^{+} + [tex]\pi[/tex]^{} ~ g^{2}_{cu}g^{2}_{uantis} = (g_{w}sin[tex]\vartheta[/tex]_{c})^{2}
Is this right?
Thanks
