View Single Post
burritoloco is offline
Jun15-11, 04:06 PM
P: 85
Hi, yet another question regarding polynomials :). Just curious about this.

Let f(x), g(x) be irreducible polynomials over the finite field GF(q) with coprime degrees n, m resp. Let [itex]\alpha , \beta[/itex] be roots of f(x), g(x) resp. Then the roots of f(x), g(x), are [itex]\alpha^{q^i}, 0\leq i \leq n-1[/itex], and [itex]\beta^{q^j}, 0\leq j \leq m-1[/itex].

Question: What is the irreducible polynomial over GF(q) of degree nm with roots [itex]\alpha^{q^i}\beta^{q^j}[/itex] where [itex]0\leq i \leq n-1[/itex], and [itex]0\leq j \leq m-1[/itex]. Can you define such polynomial explicitly in terms of just f(x) and g(x) without the roots appearing in the formula?

Note: The last sentence/question is what really interests me as the following is the required polynomial (but defined in terms of the roots of f(x))

[tex]F(x) = \prod_{i=0}^{n-1}\alpha^{mq^i}g\left(\alpha^{-q^i}x\right)[/tex]

Thank you!
Phys.Org News Partner Science news on
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes