View Single Post
Jun15-11, 04:06 PM
P: 85
Hi, yet another question regarding polynomials :). Just curious about this.

Let f(x), g(x) be irreducible polynomials over the finite field GF(q) with coprime degrees n, m resp. Let [itex]\alpha , \beta[/itex] be roots of f(x), g(x) resp. Then the roots of f(x), g(x), are [itex]\alpha^{q^i}, 0\leq i \leq n-1[/itex], and [itex]\beta^{q^j}, 0\leq j \leq m-1[/itex].

Question: What is the irreducible polynomial over GF(q) of degree nm with roots [itex]\alpha^{q^i}\beta^{q^j}[/itex] where [itex]0\leq i \leq n-1[/itex], and [itex]0\leq j \leq m-1[/itex]. Can you define such polynomial explicitly in terms of just f(x) and g(x) without the roots appearing in the formula?

Note: The last sentence/question is what really interests me as the following is the required polynomial (but defined in terms of the roots of f(x))

[tex]F(x) = \prod_{i=0}^{n-1}\alpha^{mq^i}g\left(\alpha^{-q^i}x\right)[/tex]

Thank you!
Phys.Org News Partner Science news on
NASA team lays plans to observe new worlds
IHEP in China has ambitions for Higgs factory
Spinach could lead to alternative energy more powerful than Popeye