View Single Post
Nov24-11, 08:48 PM
P: 94
1. The problem statement, all variables and given/known data
For the following matrix, find the value of t, if any, so that the following matrix is diagonalizable

5 & -2 & 4\\
0 & 3 & t\\
0 & 0 & 5

3. The attempt at a solution
In order for A to be diagonalizable, we need 3 linearly independent eigenvectors, that is, 3 linearly independent eigenvalues

5-x & -2 & 4\\
0 & 3-x & t\\
0 & 0 & 5-x
3-x & t\\
0 & 5-x
[tex]= (5-x)((3-x)(5-x)-0t)[/tex]

The eigenvalues are 3 and 5.
Obviously, it doesn't matter what t is, we will not be able to get the matrix A to be diagonalizable.

My professor said that he thought there was one correct value for t (but he wasn't sure). Is what I've done correct?
Phys.Org News Partner Science news on
Pilot sites in energy from coffee waste show good results
Startups offer banking for smartphone users
Factor in naked mole rat's cells enhances protein integrity