Quote by UnD
Lol sry got stuck on this past quesiton
consider z^2 + az+ (1+i)=0 , find the complex number a, given that i is a root of the equation
so (xi) is a factor thing
z= a +_ sqroot a^2 4 4i

2
then let sqroot a^2 4  4I =c+ib
lol i don't know where to go after that.

Well actually, z i is a factor, not xi!
Given that zi is a factor we can divide by it:
zi divides into z
^{2}+ az+ (1+i)
z+ (a+i) times with a remainder of (1+a)i . If i really is a root of the equation, then that remainder must be 0. So a must be ____.