Register to reply

Yukawa-Hooke Equasion...

by Orion1
Tags: equasion, yukawahooke
Share this thread:
Jan14-04, 06:57 AM
Orion1's Avatar
P: 989

Hooke's Law:
[tex]W(x) = - \frac{kx^2}{2}[/tex]
k - spring force constant

Yukawa Potential:
[tex]U(r) = - f^2 \frac{e^- \frac{(r/r_0)}{}}{r}[/tex]
f - interaction strength
r0 = 1.5*10^-15 m

[tex]U(r) = W(r)[/tex]

Yukawa-Hooke Equasion:
[tex]-f^2 \frac{e^- \frac{(r/r_0)}{}}{r} = -\frac{kr^2}{2}[/tex]

[tex]f^2 = \frac{kr^3}{2e^- \frac{(r/r_0)}{}}[/tex]

[tex]f = \sqrt{ \frac{kr^3}{2e^- \frac{(r/r_0)}{}}}[/tex]

[tex]r = \sqrt[3]{ \frac{2f^2 e^- \frac{(r/r_0)}{}}{k}}[/tex]

[tex]E(r) = U(r) + W(r)[/tex]
[tex]E(r) = -f^2 \frac{e^- \frac{(r/r_0)}{}}{r} - \frac{kr^2}{2}[/tex]

Yukawa Meson Mass-Energy Spectrum:
[tex]\pi ^o (135 Mev) -> \eta ^o (548.8 Mev)[/tex]
r1 = 1.461 Fm -> .359 Fm

[tex]E(r) = W(r)[/tex]

[tex]- \frac{\hbar c}{r_1} = - \frac{kr_1 ^2}{2}[/tex]

[tex]k = \frac{2 \hbar c}{r_1 ^3}[/tex]

[tex]E(r) = U(r)[/tex]
[tex]- \frac{\hbar c}{r_1} = -f^2 \frac{e^- \frac{(r_1/r_0)}{}}{r_1}[/tex]

[tex]\hbar c = f^2 e^- \frac{(r_1/r_0)}{}[/tex]

[tex]f = \sqrt{ \frac{\hbar c}{{e^- \frac{(r_1/r_0)}{} }}[/tex]

How effective is the Yukawa-Hooke Equasion at emulating a Nuclear Force Mediator?

What is the depth of such an equasion? and can it be applied to String Theory?

Phys.Org News Partner Physics news on
Scientists uncover clues to role of magnetism in iron-based superconductors
Researchers find first direct evidence of 'spin symmetry' in atoms
X-ray laser probes tiny quantum tornadoes in superfluid droplets
Jan19-04, 07:20 AM
PF Gold
arivero's Avatar
P: 2,906
The issue is relativistic invariance. Can one implement Hooke's law in a relativistic invariant way.?

Yukawa force is mediated via a particle of mass 1/R_0, so that relativity can be implemented simply by asking the particle propagator to fullfill it.

I am not telling it does not exist a particle interpretation of Hooke's law, just I have never heard of it. Neither of a string interpretation Hooke's law... but it could be, because these strings somehow are relativity-complient.

Register to reply

Related Discussions
The Hooke Folio Online General Discussion 2
Hooke´s law in cylindical coodinates, with thermal terms Classical Physics 0
Gravity Equasion? Special & General Relativity 3
Newton-Hooke Equasion... Astronomy & Astrophysics 7
Yukawa-Hooke Equasion... High Energy, Nuclear, Particle Physics 0