Register to reply

What is new with Koide sum rules?

by arivero
Tags: koide, rules
Share this thread:
arivero
#1
Nov17-11, 05:17 PM
PF Gold
arivero's Avatar
P: 2,921
I am detaching this to BSM because it is already getting too much parameters in the bag.

What has happened this year is that Werner Rodejohann and He Zhang, from the MPI in Heidelberg, proposed that the quark sector did not need to match triplets following weak isospin, and then empirically found that it was possible to build triplets choosing either the massive or the massless quarks. This was preprint http://arxiv.org/abs/1101.5525 and it is already published in Physics Letters B.

Later, two weeks ago, another researcher from the same institute veifyed the previous assertion and proposed a six quarks generalisation, in http://arxiv.org/abs/1111.0480

Then myself, answering to a question here in PF, checked that there was also a Koide triplet for the quarks of intermediate mass. I have not tried to find a link between this and the whole six quarks generalisation, but I found other interesting thing: that the mass constant AND the phase for the intermediate quarks is three times the one of the charged leptons. This seems to be a reflect of the limit when the mass of electron is zero, jointly with an orthogonality between the triplets of quarks and leptons in this limit: it implies a phase of 15 degrees for leptons and 45 degrees for quarks, so that 45+120+15=280. If besides orthogonality of Koide-Foot vectors we ask for equality of the masses (charm equal to tau, strange equal muon), the mass constant needs to be three too.

So,

with the premises
  1. Top, Bottom, Charm have a Koide sum rule
  2. Strange, Charm, Bottom have a Koide sum rule
  3. Electron, Muon, Tau have a Koide sum rule
  4. phase and mass of S-C-B are three times the phase and mass of e-mu-tau

And the input
  • electron=0.510998910 \pm 0.000000013
  • muon=105.6583668 \pm 0.0000038

The sum rules allow to calculate the following masses.
  • tau=1776.96894(7) MeV
  • strange=92.274758(3) MeV
  • charm=1359.56428(5) MeV
  • bottom=4197.57589(15) MeV
  • top=173.263947(6) GeV

(Errors are just from the extreme plus and minus, actually they would be a bit smaller; most probably any fundamental theory for the sum rules should propose greater second order corrections.).

Furthermore, the mass unit for leptons is 0.313,856,4 GeV and then for intermediate quarks is 0.941,569 GeV. Very typical QCD masses.

Plus, some of the sum rules of the Heidelberg group(s) can be used to give diffrent estimates for up and down. Or it can be tryed from other triplets (eg, Marrni with top-up-down).
Phys.Org News Partner Physics news on Phys.org
Engineers develop new sensor to detect tiny individual nanoparticles
Tiny particles have big potential in debate over nuclear proliferation
Ray tracing and beyond
mitchell porter
#2
Nov18-11, 01:43 AM
P: 756
Quote Quote by arivero View Post
phase and mass of S-C-B are three times the phase and mass of e-mu-tau
I suggest that this is the key, when considered in conjunction with Kartavtsev's generalization of the Koide relations. See equation 10 in his paper, and the paragraph beneath it: The formula works best when all six quarks are included at once, and similarly extending the original Koide relation to include the neutrinos will not reduce its validity, because the neutrino masses are so small. Your analogy between s-c-b and e-mu-tau is a clue to an even tighter mapping between Kartavtsev's formula for the quarks and the corresponding formula for the leptons. (I also suggest that the extra factor of 3 has to do with color - there are three times as many quarks as there are leptons, when color is taken into account - but it may take a while to implement that idea.)
arivero
#3
Nov18-11, 02:06 AM
PF Gold
arivero's Avatar
P: 2,921
In GUT, Howard Georgi and Cecilia Jarlskog discovered that it was possible to build mass relationships between the down sector and the leptons where generations could arbitrarily be equal, one third or three times the mass of the other. This was done with a ugly mix of Higgsess, but they conjectured thet the factor 3 was coming really from colour.

I am not sure about Kartavtsev formula, but yes it could be possible to explain the perturbation away 15 degrees via some renormalisation running. I think it is mostly an electromagnetic correction, something involving alpha and the quotient of (sum of) lepton and quark masses. But it is just a weak conjecture; it is easy to see QCD involved here, but electromagnetism is a different beast.

qsa
#4
Nov18-11, 02:53 AM
P: 362
What is new with Koide sum rules?

Does that mean charge and mass are linked. What about the gravity and strong force in ADS.
arivero
#5
Nov18-11, 02:58 AM
PF Gold
arivero's Avatar
P: 2,921
Quote Quote by qsa View Post
Does that mean charge and mass are linked. What about the gravity and strong force in ADS.
It is an incentive, indeed. Or just plain KK compact in AdS.
arivero
#6
Nov18-11, 08:46 AM
PF Gold
arivero's Avatar
P: 2,921
This is what I think is going on. Before perturbations, there is at least a Koide triplet with a zero mass component and another one that is in the opossite side of Foot cone, so orthogonal to it.

That means a phase of 15 degrees (pi/12 radians) for the former and a phase of -45 degrees for the later:

[tex]
m_k= M (1 +\sqrt 2 \cos({360k \over 3} +15))^2 [/tex][tex]
n_k= N (1 +\sqrt 2 \cos({360k \over 3} -45-120))^2
[/tex]

You can check orthogonality of the Koide-Foot vectors (roots of masses):
[tex]({3+\sqrt 3 \over 2}, 0, {3-\sqrt 3 \over 2})*({1-\sqrt 3 \over 2}, 2, {1+\sqrt 3 \over 2})=0[/tex]

And the point is that the comparison of the mass tuples:
[tex]
m=\left( 3 (1+ {\sqrt 3 \over 2}) M, 0 , 3 (1 - {\sqrt 3 \over 2}) M\right)[/tex][tex]
n=\left( (1 - {\sqrt 3 \over 2}) N, 4N, (1+ {\sqrt 3 \over 2}) N\right)
[/tex]
makes very very tempting to set [itex]N=3M[/itex] And so we do.

For a basic M of 313.86 MeV, that means [itex]m=(1757,0,126.1)[/itex] and [itex]n=(126.1,3766,1757)[/itex]. That should be the lepton masses tau,e,mu and the quark masses s,b,c before applying the small rotation (or perturbation).

And finally here comes the second guessing. We notice that also one phase is three times the other, and we guess (based on our previous empirical check ) that it is going to keep so, [itex]\delta_q=3 \delta_l[/itex]. With this premise, we have rotated the lepton vector to fit experiment and then copied the phase to the quark sector. Perhaps it is not so; but in this way we have got to proceed with only two experimental inputs to fix all the other masses.

Ok, whatever, what we do is

1) input m_e and m_l into Koide sum rule, to get m_tau.
me=0.510998910
mmu=105.6583668
mtau=((sqrt(me)+sqrt(mmu))*(2+sqrt(3)*sqrt(1+2*sqrt(me*mmu)/(sqrt(me)+sqrt(mmu))^2)))^2
we get mtau: 1776.968... but this is no news, it is Koide 1981.

2) Use the lepton triplet to get the values of M and delta.
m=(me+mmu+mtau)/6
pi=4*a(1)
cos=(sqrt(me/m)-1)/sqrt(2)
tan=sqrt(1-cos^2)/cos
delta=pi+a(tan)-2*pi/3
We get delta about 2/9 (or and m about 313.8 MeV. Again, this is old news. But the mass is very reminiscent of QCD, and the point that in the next formula we multiply by three, getting the order of the proton mass (or neutron, or even approx eta'), is also curious.

3) Multiply these parameters as said, [itex]3M, 3\delta[/itex], and use them to build a quark triplet.
mc=3*m*(1+sqrt(2)*c(3*delta+4*pi/3))^2
ms=3*m*(1+sqrt(2)*c(3*delta+2*pi/3))^2
mb=3*m*(1+sqrt(2)*c(3*delta))^2
If you are going to check Koide, remember that with this phase, the value of sqrt(ms) is negative:
(sqrt(mb)-sqrt(ms)+sqrt(mc))^2/(mb+ms+mc)
1.50000000000000000002
4) use again Koide sum rule to get the mass of the top.
mtop=((sqrt(mc)+sqrt(mb))*(2+sqrt(3)*sqrt(1+2*sqrt(mc*mb)/(sqrt(mc)+sqrt(mb))^2)))^2
5) print your new outputs and check against pdg
ms
92.27475468510853794238
mc
1359.56423480142772524333
mb
4197.57575183796073176386
mtop
173263.94170381397040438241
arivero
#7
Nov18-11, 01:40 PM
PF Gold
arivero's Avatar
P: 2,921
Quote Quote by mitchell porter View Post
Kartavtsev's
Hmm it seems we should call it Goffinet-Kartavtsev. It is also 3.56 in http://cp3.irmp.ucl.ac.be/upload/the...d/goffinet.pdf Goffinet was in one of the teams (Brannen was *the* other) trying Koide for neutrinos in the 2005.
arivero
#8
Nov20-11, 04:25 PM
PF Gold
arivero's Avatar
P: 2,921
Quote Quote by arivero View Post
[tex]
m=\left( 3 (1+ {\sqrt 3 \over 2}) M, 0 , 3 (1 - {\sqrt 3 \over 2}) M\right)[/tex][tex]
[/tex]
By the way, this tuple in its version
[tex]
m_1=0, {m_2 \over m_3}= {(2 - \sqrt 3 ) \over (2+ \sqrt 3) }
[/tex]
is also discussed in Rivero-Gsponer 2005, but it is at least as old as 1978, in a paper usually quoted by Koide: http://inspirehep.net/record/130343?ln=es
Quark Masses and Cabibbo Angles.
Haim Harari (Weizmann Inst.), Herve Haut, Jacques Weyers (Louvain U.).
Phys.Lett. B78 (1978) 459
arivero
#9
Nov22-11, 07:11 PM
PF Gold
arivero's Avatar
P: 2,921
Quote Quote by arivero View Post
5) print your new outputs and check against pdg
ms
92.27475468510853794238
mc
1359.56423480142772524333
mb
4197.57575183796073176386
mtop
173263.94170381397040438241
Hmm, I forget to add, instead of pdf you can also try http://arxiv.org/abs/1109.2163
mitchell porter
#10
Nov22-11, 10:54 PM
P: 756
In my opinion, this s-c-b relation is a big big clue about family symmetries.

Consider Koide's latest yukawaon model. It has U(3) x O(3) family symmetries, constructed to preserve the e-mu-tau relation at low energies. It's clearly hard work to make field-theory models with this property, but he's done it.

Obviously, if a very similar relation for s-c-b holds, then that should have enormous ramifications for the structure of a yukawaon model. In fact, as Kartavtsev remarks, it's problematic to have just one half of the b-t doublet in the formula - which is why I think the six-particle formula might be fundamental, but perhaps with some secondary, constraining sub-relation that connects s-c-b.

Anyway, I think the obvious thing to do is to try to modify the yukawaon model so as to obtain the s-c-b relation. I also think it would make a lot of sense to combine it with the Georgi-Jarlskog relation, which in its original form was also achieved in an SU(5) theory, such as Koide works with in his paper above.

Alternatively, one can go the route of Carl Brannen, and just reconstruct the whole of quantum field theory around the clue provided by Koide's formula. But for now I think I will stick with the yukawaon approach.
arivero
#11
Nov23-11, 04:05 AM
PF Gold
arivero's Avatar
P: 2,921
Quote Quote by mitchell porter View Post
In my opinion, this s-c-b relation is a big big clue about family symmetries.
Indeed. I have done a first surview of the early theories, who aimed to calculate the Cabibbo angle and occasionaly met some mass formula, such as the one from Harari et al. All of them proceed by putting a discrete symmetry but most of them do not use the standard model but the Left-Right symmetric model. They put the symmetry in the R part, then they break this SU(2)_R. It makes sense, as then a up quark is linked not only with a down_L but also with a bottom_R, and then the mass pattern needs some more levels to accommodate everything.

By the way, are we two the only persons reading the thread? It is good to exchange and archive ideas (I am finding now in PF some valuables from six years ago) but it should me nice if other readers have some input, or just a wave and a hello. In order to give other persons an entry point, let me coalesce all the bc -l code in a single cut-paste block:

pi=4*a(1)
me=0.510998910
mmu=105.6583668
mtau=((sqrt(me)+sqrt(mmu))*(2+sqrt(3)*sqrt(1+2*sqrt(me*mmu)/(sqrt(me)+sqrt(mmu))^2)))^2
m=(me+mmu+mtau)/6
cos=(sqrt(me/m)-1)/sqrt(2)
tan=sqrt(1-cos^2)/cos
delta=pi+a(tan)-2*pi/3
mc=3*m*(1+sqrt(2)*c(3*delta+4*pi/3))^2
ms=3*m*(1+sqrt(2)*c(3*delta+2*pi/3))^2
mb=3*m*(1+sqrt(2)*c(3*delta))^2
mtop=((sqrt(mc)+sqrt(mb))*(2+sqrt(3)*sqrt(1+2*sqrt(mc*mb)/(sqrt(mc)+sqrt(mb))^2)))^2
I'd be glad if someone uploads some equivalent maxima, macsima or symbolic algebra whatever code.

And of course, there is a pending puzzle: to explain the phase of the triplet charm-bottom-top
arivero
#12
Nov30-11, 07:25 PM
PF Gold
arivero's Avatar
P: 2,921
The new research in this thread has been reported in http://vixra.org/abs/1111.0062 and http://arxiv.org/abs/1111.7232 Due to the interference of the holding process plus Thanksgiving day, vixra has been substantially faster in this case! Plus, the comments feature in vixra can be useful, if you want to point out missing references, you can do it there.
mitchell porter
#13
Jan6-12, 12:55 AM
P: 756
Wojciech Krolikowski, who (like Koide) found a formula for the charged lepton masses, has now extended it to all six quarks as well, in http://arxiv.org/abs/1201.1251. I am still working towards an explanation of Alejandro's formulas (which I consider a massive breakthrough) and feel like I hardly have room in my head for this new paper as well, but I'm sure that feeling will pass...
mitchell porter
#14
Jan9-12, 03:15 AM
P: 756
I have been thinking about this for weeks now and I have lots of ideas, but nothing decisive, so it's time to talk.

First, let's consider what a "standard" approach to a discovery like this is. If someone guesses a pattern in the masses and mixing angles, the answer usually involves some combination of multiple Higgses, "flavons" whose VEVs contribute to the Yukawas, and family symmetries (usually discrete).

Let us suppose provisionally that the quantity appearing in the Koide relation is a VEV (and that the corresponding Yukawa is the square of this VEV). It seems that some of these VEVs are negative, thus the "minus sqrt mass" term appearing in s-c-b (and in Brannen's neutrino triplet).

For the quarks we then have a set of six quantities, which to a first approximation satisfy the Koide relation in four sets of three (dus, usc, scb, cbt). The Koide relation only holds well for scb and cbt, but there is some evidence that the actual values for dus and usc are highly perturbed away from a "primordial" set of mass values which includes m_u = 0. Another aspect of this perturbation is that the primordial Koide phase for the scb triplet is 45 degrees, but the real value is 2/3 radians.

In his "yukawaon" papers, Koide obtains VEV relations from supersymmetric vacuum conditions. So that is one way to get a set of four chained Koide triplets - construct a superpotential which implies Koide VEV relations for the four sets of three. (It would also be good to do this without supersymmetry.)

However, it's clear (from the relation between e-mu-tau and s-c-b) that the important parametrization of the Koide relation is the one (due to Carl Brannen?) featuring a mass scale and a phase. These parameters don't stand forth in Koide's constructions. Since Brannen uses circulant matrices, perhaps we should therefore be interested in models like Stephen Adler's multi-Higgs models with Z_3 symmetry, where there are three or six Higgs doublets, and where there are circulant (or "retrocirculant") mass matrices.

Another thing we can learn from Koide is the importance of the Sumino mechanism. The running of the masses ought to spoil the original Koide relation for the charged leptons, but it remains exact. Sumino suggested that the bosons of a gauged family symmetry could cancel the electromagnetic radiative corrections which would otherwise spoil the relation.

Koide's latest yukawaon models are SU(5)-compliant supersymmetric models in which the Koide relation for the charged leptons comes from SUSY vacuum conditions, and in which the Sumino family symmetry exists and is gauged. So one way forward is to follow his lead: look for a basic explanation of these extended Koide relations - perhaps using Adler-Brannen circulant mass matrices, perhaps using a version of Georgi-Jarlskog to explain the factor of 3 difference between s-c-b and e-mu-tau - and then use the Sumino mechanism to protect the relations (though it's not yet clear whether the quark mass relations are exact enough to need protection).

However, this still leaves one more clue unused - the appearance of QCD mass scales in the Brannen parametrization of the Koide formula. This leads me to think in terms of holographic QCD and Alejandro's own "sBootstrap".

The basic paradigm of holographic QCD is that you have a stack of color branes and a stack of flavor branes that intersect. A gluon is a string between color branes, a quark is a string between a flavor brane and a color brane, a meson is a string between flavor branes, and a baryon is a brane instanton connected to multiple flavor branes by strings.

The sBootstrap is a combinatorial construction in which all the SM fermions are made from pairings of the five "light" quarks ("light" here means lighter than the top quark). Leptons are made from mesonlike pairings, quarks from diquarklike pairings. Since holographic QCD contains fermionic meson strings ("mesinos"), an hQCD implementation of the sBootstrap would say that the leptons are mesinos. The situation for the quarks is less satisfactory; but one might imagine that there is some mixing between quark strings and fermionic "diquarkinos".

Top-down holographic QCD constructions (Sakai-Sugimoto is the best known) so far don't resemble QCD exactly. For one example, they are usually studied in the large-N limit, N being the number of colors, whereas reality involves N=3. But also, the spectrum has extra stuff not seen in reality. The fermionic mesons already mentioned are one of these trouble spots.

However, if we expect the leptons to come from the mesino sector, then the trouble becomes a virtue. We might look for a hQCD model that contains the whole standard model via the sBootstrap. (Or we might look for a more conventional string model which nonetheless realizes the leptons in this fashion.)

How is this relevant to explaining the extended Koide relations? The point is that it offers an avenue whereby QCD mass scales may show up in lepton mass formulae, since the leptons would just be the mesinos of some SQCD-like theory.
arivero
#15
Jan9-12, 06:40 AM
PF Gold
arivero's Avatar
P: 2,921
Quote Quote by mitchell porter View Post
actual values for dus and usc are highly perturbed away from a "primordial" set of mass values which includes m_u = 0.
Were this to happen for the triplet down-up-strange, we could expect that the perturbation term is,
[tex]
\delta m_a = { m_b m_c \over M}
[/tex]
with M fixed, the same for the three equations. Traditionally it was expected to come from instanton, or tunneling between similar states, if you prefer. If seems that lattice QCD has ruled out this term, but it is unclear.

Note that if m_u = 0, only the up quark gets a correction. This was the expected way to solve the "CP problem" (or was it the "strong CP problem"? whatever)

For d,u,s= (5.3, 0.036, 92), all units in MeV, it is more or less the same, and we can set M to 185 MeV to get

[tex]
m_u= 0.036 + { 92 \cdot 5.3 \over M} = 0.036 + { 487.6 \over M} = 2.67 MeV
[/tex]
[tex]
m_d= 5.3 + { 0.036 \cdot 92 \over M} = 5.3 + { 3.312 \over M} = 5.32 MeV
[/tex]
[tex]
m_s= 92 + { 0.036 \cdot 5.3 \over M} = 92 + { 0.1908 \over M} = 92 MeV
[/tex]

but at the price of an extra free parameter M. Not bad, because it is about M=185 MeV, so still expected from QCD, chiral scale, etc... There is a wide range to choose without violating the experimental constraints. But it is still an extra parameter.
ohwilleke
#16
Jan9-12, 11:54 AM
PF Gold
P: 643
I have references to most of the recent Koide and quark-lepton complementarity papers in a series of posts here: http://dispatchesfromturtleisland.bl...search?q=koide

One is notable for suggesting a nearly massless up quark while being spot on for the other quark masses, which if true, might help explain strong CP invariance: http://arxiv.org/abs/hep-lat/0112029 and light neutrinos http://arxiv.org/PS_cache/hep-th/pdf/0608/0608053v1.pdf There are definitional issues that go into the current operational definition of up quark mass, http://arxiv.org/PS_cache/hep-ph/pdf/0312/0312225v2.pdf which are pertinent to this question.

There is a very detailed exploration of Q-L complementarity relations in phenomenology here: http://cp3.irmp.ucl.ac.be/upload/the...d/goffinet.pdf This was first proposed in 1990: http://prd.aps.org/abstract/PRD/v41/i11/p3502_1 by Foot and Lew. Other citations to related points here: http://dispatchesfromturtleisland.bl...-coupling.html QLC without a parameterization specific formulation was sketched out at http://arxiv.org/abs/1112.2371 MINOS seems to be hinting at some corroboration of this hypothesis: http://web.mit.edu/panic11/talks/thu...2011July28.pdf
MTd2
#17
Jan11-12, 06:48 AM
PF Gold
P: 1,961
A new paper that cites Brennen and Arivero:

http://arxiv.org/PS_cache/arxiv/pdf/...201.2067v1.pdf

He finds a natural geometric set up in which he finds all masses, including quarks, but putting all of the 6 together!
marcus
#18
Jan11-12, 11:50 AM
Astronomy
Sci Advisor
PF Gold
marcus's Avatar
P: 23,235
Quote Quote by MTd2 View Post
A new paper that cites Brannen and Arivero:

http://arxiv.org/PS_cache/arxiv/pdf/...201.2067v1.pdf

He finds a natural geometric set up in which he finds all masses, including quarks, but putting all of the 6 together!
1654 was a great year for particle physics!
Descartes – in his 1654 letter to the princess of Bohemia, Elizabeth II – showed that the curvatures of four mutually tangent circles (reciprocal of radii), say a,b,c,d, satisfy the following “Descartes’s formula”...
Nature is showing us she can be completely weird. Or maybe the word is witty.


Register to reply

Related Discussions
Koide and Quarks High Energy, Nuclear, Particle Physics 11
Koide awareness General Physics 0
Koide leptons: I am astonished. General Physics 0
Koide awareness General Physics 0