Register to reply

Flat spacetime + gravitons = Curved spacetime?

by waterfall
Tags: curved, flat, gravitons, spacetime
Share this thread:
Feb13-12, 01:59 AM
P: 381
Hi, does flat spacetime + gravitons automatically lead to curved spacetime?

In an old 2002 google thread sci.physics.research which is moderated:

Steve Carlip seemed to agree when he said:

"There's a bit more to it. You also need, at least, a massless spin two interaction that couples universally. While this doesn't involve general covariance in an obvious way, a massless spin two field has a gauge invariance that's ``as big'' as diffeomorphism invariance (i.e., that's parametrized by a vector field), and the universality of the coupling rules out any noninvariant ``background.''

Steve Carlip"

Bill Hobba who is now a member of Physicsforums wrote this at sci.physics. (need comment how true it is).

Someone asked (in 2002) at sci.physics: "But in string theory, spacetime still has curvature."

Bill Hobba replied all the following:

"No it doesn't. It emerges as a limit - but the underlying geometry of space-time - if it has one - is not known."

"As Steve Carlip once explained, it is experimentally impossible to tell a theory formulated in flat space-time that makes rulers and clocks behave as if it was curved from a curved one, so the question is basically meaningless at our current level of knowledge."

"Up to about the plank scale the assumption it is flat is fine, with gravitons making it behave like it had curvature or actually giving it curvature (we can't determine which) works quite well. "

True? If yes, how much is it supported in String Theory? If not, why?
Phys.Org News Partner Science news on
Scientists discover RNA modifications in some unexpected places
Scientists discover tropical tree microbiome in Panama
'Squid skin' metamaterials project yields vivid color display
Feb13-12, 04:27 AM
P: 381
Looking at this matter further. I found out it was not even original claim by Steve Carlip but direct from Misner, Thorne, & Wheeler's book "Gravitation". I saw the following in Physicsforums:

"Is spacetime really curved? Embedded somewhere?

Message #4:

"There's a fascinating analysis due to Deser ["Self-interaction and
gauge invariance", General Relativity & Gravitation 1 (1970), 9-18;
see also his later paper "Gravity from self-interaction in a curved
background", Classical and Quantum Gravity 4 (1997), L99-L105],
summarized in part 5 of box 17.2 of Misner, Thorne, & Wheeler's book.

Quoting from that latter summary:

"The Einstein equations may be derived nongeometrically by
noting that the free, massless, spin-2 field equations
[[for a field $\phi$]]
whose source is the matter stress-tensor $T_{\mu\nu}$, must
actually be coupled to the \emph{total} stress-tensor,
including that of the $\phi$-field itself.
Consistency has therefore led us to universal coupling, which
implies the equivalence principle. It is at this point that
the geometric interpretation of general relativity arises,
since \emph{all} matter now moves in an effective Riemann space
of metric $\mathcal{g}^{\mu\nu} = \eta^{\mu\nu} + h^{\mu\nu}$.
... [The] initial flat `background' space is no longer observable."

In other words, if you start off with a spin-2 field which lives on a
flat "background" spacetime, and say that its source term should include
the field energy, you wind up with the original "background" spacetime
being *unobservable in principle*, i.e. no possible observation can
detect it. Rather, *all* observations will now detect the effective
Riemannian space (which is what the usual geometric interpretation of
general relativity posits from the beginning)."

Feb13-12, 07:08 AM
P: 381
Check out the full arguments here in Misner, Thorne, Wheeler "Gravitation":

See the starting lines at :
5. Einstein's geometrodynamics viewed as the standard field theory for a field of spin 2 in an "unobservable flat spacetime" background

(body of arguments)

ending at
...[The] initial flat 'background' space is no longer observable." In other words, this approach to Einstein's field equation can be summarized as "curvature without curvature" or - equally well - as "flat spacetime without flat spacetime"!"

What do you think?

Feb13-12, 08:32 AM
Sci Advisor
P: 8,788
Flat spacetime + gravitons = Curved spacetime?

Yes. If spacetime can be covered by harmonic coordinates, then spacetime curvature is equivalent to a spin 2 field on a flat spacetime.

An introduction can be found in
Feb13-12, 04:08 PM
Sci Advisor
P: 7,660
I think there should actually be some testable predictions if these theories are really taken seriously, about re-radiation from things falling into black holes. But it seems that the authors of these sort of theories don't really takes them seriously enough to calculate this in detail.

Register to reply

Related Discussions
Gravitons corresponding to flat spacetime. Beyond the Standard Model 2
Embedding curved spacetime in higher-d flat spacetime Special & General Relativity 9
Flat Space, Curved Spacetime Cosmology 10
If gravitons exist, does that mean spacetime is not curved by mass? General Discussion 15
Gravitons & spacetime-curvature-geometry Special & General Relativity 4