# Excited states in the QHO

by copernicus1
Tags: states
 P: 78 Maybe the answer to this should be obvious, but if the quantum harmonic oscillator has a natural angular frequency \omega_0, why do the excited states vibrate with higher and higher angular frequencies? How do we obtain these frequencies? Thanks!
 P: 153 Maybe I didn't understand your question but this is quite the definition of "higher state". In order to increase an harmonic oscillator energy its frequency must grow.
 P: 78 Thanks, I think I understand it now. Normally the time-dependent part would look like $$e^{-i\omega t},$$ but I suppose in this case it essentially looks like $$e^{-i(n+1/2)\omega t}.$$ So as the n value increases the frequency will increase. Does this look correct? Thanks.
P: 153

## Excited states in the QHO

That's correct. The time-dependent part, in fact, generally is $exp(-iHt)$ so, in your case $H=(n+1/2)\hbar\omega$ and you get exactly what you wrote.

 Related Discussions Atomic, Solid State, Comp. Physics 5 High Energy, Nuclear, Particle Physics 6 High Energy, Nuclear, Particle Physics 9 Advanced Physics Homework 0 Advanced Physics Homework 0