Register to reply

Thoughts on this Inverse Bijection Proof

by blindgibson27
Tags: bijection, function, inverse
Share this thread:
blindgibson27
#1
Jan20-13, 09:31 PM
P: 7


Is this sufficient?
Attached Thumbnails
Bijection Proof.png  
Phys.Org News Partner Science news on Phys.org
Experts defend operational earthquake forecasting, counter critiques
EU urged to convert TV frequencies to mobile broadband
Sierra Nevada freshwater runoff could drop 26 percent by 2100
Number Nine
#2
Jan20-13, 09:54 PM
P: 772
What are you trying to prove, exactly? These just look like definitions to me, in which case a much simpler description of a one-to-one function would be as follows: A function [itex]f:X \rightarrow Y[/itex] is an injection if, [itex]\forall a,b \in X, \ f(a) = f(b) \implies a = b[/itex].
blindgibson27
#3
Jan21-13, 07:31 AM
P: 7
It is to proof that the inverse is a one-to-one correspondence. I think I get what you are saying though about it looking as a definition rather than a proof.

How about this..

Let [itex]f:X\rightarrow Y[/itex] be a one to one correspondence, show [itex]f^{-1}:Y\rightarrow X[/itex] is a one to one correspondence.

[itex] \exists x_{1},x_{2} \in X \mid f(x_{1}) = f(x_{2}) \Leftrightarrow x_{1}=x_{2} [/itex]

furthermore, [itex]f^{-1}(f(x_{1})) = f^{-1}(f(x_{2})) \Rightarrow f^{-1}(x_{1}) = f^{-1}(x_{1})[/itex] (by definition of function [itex]f[/itex] and one to one)

kind of stumped from this point on..
I may want to transfer this post over to the hw section though, I did post to just get a confirmation on my thoughts on bijection but it is now turning into something a bit more specific than that

HallsofIvy
#4
Jan21-13, 09:14 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,568
Thoughts on this Inverse Bijection Proof

Your proof that [itex]f^{-1}[/itex] is injective is correct. Your proof that it is surjective does not look to me like it actually says anything!

You want to prove that, if [itex]x\in X[/itex] then there exist [itex]y\in Y[/itex] such that [itex]f^{-1}(y)= x[/itex].

Given [itex]x\in X[/itex], let [itex]y= f(x)[/itex]. Then it follows that [itex]f^{-1}(y)= f^{-1}(f(x))= x[/itex].
blindgibson27
#5
Jan21-13, 12:01 PM
P: 7
That makes a lot of sense and I am following that thought process, thank you for clearing that up for me. I was just stumped on the direction of the onto.
blindgibson27
#6
Jan21-13, 12:58 PM
P: 7
In the same light, these are my thoughts on my next exercise. If I have this wrong I may need to solidify my idea on the concept a bit more.

It reads: Show that if [itex]f:X \rightarrow Y[/itex] is onto [itex]Y[/itex], and [itex]g: Y \rightarrow Z[/itex] is onto [itex]Z[/itex], then [itex]g \circ f:X \rightarrow Z[/itex] is onto [itex]Z[/itex]


Prf
Given [itex]y \in Y[/itex], let [itex]y = g^{-1}(z)[/itex] and [itex] x = f^{-1}(y)[/itex]
[itex]\forall z \in Z [/itex], [itex]f^{-1}(g^{-1}(z)) = f^{-1}(y) = x[/itex]


Register to reply

Related Discussions
Bijection Proof Calculus & Beyond Homework 15
Function must be a bijection for its inverse to exist? Calculus 8
Prove Inverse of Bijection function Calculus & Beyond Homework 4
Inverse of continuous bijection Differential Geometry 10
Proof of Bijection Precalculus Mathematics Homework 3