
#1
Feb1013, 08:13 PM

P: 992

For multibosonic systems, as I understand, the wave function must always be symmetric (antisymmetric for fermionic, which this question easily generalizes to).
But as far as I can see for N>2 you can easily construct alot of other wave functions which are symmetric rather than the one my book finds (which essentially is the slater determinant one with + instead of ),if you allow for the fact that each product only contains product of two wave functions. Say for instance you have 3 particles with wavefunction a1, b2, c3 Then we could choose: ψ = a1b2 + a2b1 + a1b3 + a3b1 + (combination of a and c, combination of b and c in the same way) The wave function above is invariant under any switch between the number 1,2 and 3 (which will represent the three coordinate sets for our bosons). Why is it then, that a wave function of this kind is not acceptable? 



#2
Feb1013, 09:22 PM

Sci Advisor
HW Helper
PF Gold
P: 2,606

You are constructing a wavefunction composed of states that have only 2 of the 3 particles present at a time. Your textbook is describing wavefunctions corresponding to having all 3 particles present at the same time.




#3
Feb1113, 04:48 AM

P: 992

why is my ones necessarily only describing 2 particles present? Yes, each product only contains two wavefunctions, but all three particles' wavefunctions are included in the product as a whole.




#4
Feb1113, 06:15 AM

Sci Advisor
Thanks
P: 3,853

Symmetric wave functions
You're writing ψ as a coherent superposition of states, with a probability amplitude for being in each state. In the first two states, particle 3 does not exist. In the third and fourth state, particle 2 does not exist, and so on. This is a clear contradiction, each state must contain the same particles.




#5
Feb1213, 02:17 AM

P: 992

why exactly is that a contradiction? For a three bosonic system the wave function must be symmetric. I don't see any loss of generality in dropping out on one of the particles in one as long as its compensated for in another of the terms.
Maybe you can elaborate on that superposition thing, as far as I understood the symmetric formula with the slater determinant (switch minuses to plus) is not a superposition, its a requirement that the wave function for an nbosonic system satisfies it. 



#6
Feb1213, 02:36 AM

Sci Advisor
PF Gold
P: 1,111

Try calculating [itex]\langle \psi  \psi \rangle[/itex] for your wave function. I think you will see why it is not acceptable.




#7
Feb1213, 04:25 AM

P: 402

OP, a single permanent wave function (i.e., the symmetrized orbital product) is *not* the general bosonic wave function, just as a single Slater determinant is not a general fermionic wave function. However, general bosonic wave functions can be decomposed into linear combinations of permanents. If phi_i> is a basis of the oneparticle space, then the set of all permanents that can be formed from the phi_i> is a basis of the Fock space. That is, all bosonic wave functions can be decomposed into sums of permanents, but in general not into a single one.
If you are familiar with electronic structure: Choosing a single permanent is analogous to the HartreeFock approximation, decomposing a wave function into sums of permanents is analogous to the configuration interaction (CI) method. 



#8
Feb1313, 08:18 PM

P: 992

Can you elaborate please? Isn't it true no matter what that for an nbosonic or fermionic system the wave function describing it must NO MATTER WHAT be symmetric or antisymmetric and that can only be done (apparantly) with the formulas provided by the slater determinant.




#9
Feb1413, 03:51 AM

Sci Advisor
PF Gold
P: 1,111

Indeed, the wave function for an ensemble of identical bosons (fermions) must be symmetric (antisymmetric) with respect to the interchange of two particles.
The Slater determinant is a simple method to construct a wave function for n fermions that ensures that the properties of the fermionic wave functions are satisfied. But there are many Slater derterminants that you can write for the same nfermion system. An keep in mind that a Slater determinant only produces a wave function that is a linear combination of products of onefermion wave functions, which in itself is an approximation. 



#10
Feb1513, 06:54 PM

P: 992

What you mean it can produce more than one antisymmetric combination? And what do you mean by the approximation?




#11
Feb1613, 06:59 AM

Sci Advisor
PF Gold
P: 1,111

When you write a multielectron wave function as a Slater determinant, you are by construction writing an nelectron wave function as a product of n oneelectron wave functions, and that is an approximation. The real nelectron wave function will be a complicated function of the coordinates of all electrons.
Also, you can write multiple Slater determinants for n electrons by choosing different oneelectron wave functions to put in the derterminant. Take for example He. You can construct the Slater determinant ψ_{A} using 1sα and 1sβ. You can also construct it using 1sα and 2sβ (ψ_{B}), or 1sα and 2pβ (ψ_{C}), etc. You can then take as the actual wave function a linear combination of these Slater derterminants, ψ = c_{A} ψ_{A} + c_{B} ψ_{B} + c_{C} ψ_{C}. This is in essence what is called configuration interaction. 


Register to reply 
Related Discussions  
Wave functions of particles vs wave functions of systems (macroscopic entaglement)  Quantum Physics  7  
Square wave symmetric around zero volts  Electrical Engineering  4  
what are half wave symmetric waves ????  Electrical Engineering  1  
3D wave equation  spherically symmetric transformations  Differential Equations  3  
Symmetric functions/odd even or neither  Precalculus Mathematics Homework  2 