Tensor equations / nonlinear transformations


by JustinLevy
Tags: equations, nonlinear, tensor, transformations
JustinLevy
JustinLevy is offline
#1
Apr19-06, 04:51 AM
P: 886
I have some fairly basic (hopefully) questions about tensor equations. Hopefully someone here can help out.

Let us say I have a tensor equation, (I will use this as the example for discussion: [tex]A^{u} = b C^{uv}D_{v}[/tex]).

If this is true in one coordinate system, it will be true in all of them correct?

Now if I know the components of A,C,D in one frame (as well as the metric in this frame), then I can find the components of A,C,D in any other frame by transforming them, correct?

Can I get the metric in this new frame by transforming the metric like a normal tensor as well (it does not seem to work in general... maybe I am making mistakes)?

How do nonlinear transformations work? (For instance if I wanted to find A,C,D in an accelerated frame.) Since the transformation tensor just gives a linear transformation ... it seems to suggest that I need the metric to no longer be a constant in the frame!? Or does it work some other way?
Phys.Org News Partner Science news on Phys.org
Cougars' diverse diet helped them survive the Pleistocene mass extinction
Cyber risks can cause disruption on scale of 2008 crisis, study says
Mantis shrimp stronger than airplanes
HallsofIvy
HallsofIvy is offline
#2
Apr19-06, 07:02 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 38,896
If A is the tensor in x,y coordinates and A' is the same tensor in x',y' coordinates, then
[tex]A'= \frac{\partial x'}{\partial x}\frac{\partial y'}{\partial y}A[/tex]
That works for linear or non-linear transformations. For a linear transformation the partial derivatives would be represented by a matrix having the coefficients as entries. For a non-linear transformation, the entries in the matrix will be functions of position.


Register to reply

Related Discussions
numerical solutions of system of nonlinear algebraic equations nonlinear algebraic eq General Math 6
Wanting to get into nonlinear equations... General Math 2
system of nonlinear equations General Math 4
Need help with nonlinear differential equations Introductory Physics Homework 7
Nonlinear system of differential equations Differential Equations 1