Register to reply

Anomaly Cancellation...

by Orion1
Tags: anomaly, cancellation
Share this thread:
Orion1
#1
Jan3-04, 12:41 AM
Orion1's Avatar
P: 989


String Theory: (TOE)

Schwarz-Green Anomaly Cancellation Equasions (1984):

[tex]S_o = \int d^o xe \left[- \left( \frac{1}{2 K^2} \right) R - \left( \frac{1}{K^2} \right) \left( \varphi^-2 \right) \vartheta_r \varphi \vartheta^n \varphi - \left( \frac{1}{4 g^2} \right) \right]...[/tex]

[tex]... \left[ \left( \varphi^-3 \right) F_\mu ^o F^\mu - \left( \frac{ 3 K^2}{2 g^4} \right) \left( \varphi^-2 \right) H_p H^.ky \right][/tex]

[tex]H = dB + W_y ^o - W_l ^o[/tex]
[tex]S_a = dA + \left[ A_1 \Lambda \right][/tex]
[tex]S_w = d \Theta + \left[ W_1 \Theta \right][/tex]
[tex]S_b = -tr \left( A_1 d \Lambda \right) + tr \left( W d \Theta \right)[/tex]

Gravitational Anomaly:
[tex] \left( \frac{n496}{64} \right) \left[ \frac{1}{5870} trR^6 + \frac{ 1}{4379} trR^2 trR^4 + \frac{ 1}{10346} \left( trR^2 \right) ^3 \right]...[/tex]
[tex]... + \frac{ 1}{864} trR^2 trR^4 + \frac{ 1}{1536} \left( trR^2 \right) ^3[/tex]

Yang-Mills Anomaly:
[tex]- \frac{ 1}{15} \left( p - 32 \right) trF^6 +15 \left( p - 2 \right) tr F^2 \left( \left( p - 8 \right) trF^4 + 3 \left(trF^2 \right) ^2 \right)[/tex]

[tex]p = 32[/tex]
[tex]n = \frac{ 1}{2} p \left( p - 1 \right) \left( for SO \left( p \right) \right)[/tex]
[tex]n = \frac{1}{2} \left( 32 \right) \left( 31 \right)[/tex]
[tex]n = 496[/tex]

Note! These equasions have not been compiled completely accurately with the actual equasions. If anyone has more accurate equasions, please post them in latex format and I will amend my source code.

These equasions contain 'anomalies'.

Reference:
http://www.pbs.org/wgbh/nova/elegant/program.html

Phys.Org News Partner Physics news on Phys.org
IHEP in China has ambitions for Higgs factory
The physics of lead guitar playing
The birth of topological spintronics

Register to reply

Related Discussions
Infrared cancellation in QED General Physics 6
Pseudo real grps and anomaly cancellation... Beyond the Standard Model 0
Anomaly Cancellation High Energy, Nuclear, Particle Physics 2
Cancellation Law General Math 5