Register to reply

Anomaly Cancellation...

by Orion1
Tags: anomaly, cancellation
Share this thread:
Jan3-04, 12:41 AM
Orion1's Avatar
P: 989

String Theory: (TOE)

Schwarz-Green Anomaly Cancellation Equasions (1984):

[tex]S_o = \int d^o xe \left[- \left( \frac{1}{2 K^2} \right) R - \left( \frac{1}{K^2} \right) \left( \varphi^-2 \right) \vartheta_r \varphi \vartheta^n \varphi - \left( \frac{1}{4 g^2} \right) \right]...[/tex]

[tex]... \left[ \left( \varphi^-3 \right) F_\mu ^o F^\mu - \left( \frac{ 3 K^2}{2 g^4} \right) \left( \varphi^-2 \right) H_p H^.ky \right][/tex]

[tex]H = dB + W_y ^o - W_l ^o[/tex]
[tex]S_a = dA + \left[ A_1 \Lambda \right][/tex]
[tex]S_w = d \Theta + \left[ W_1 \Theta \right][/tex]
[tex]S_b = -tr \left( A_1 d \Lambda \right) + tr \left( W d \Theta \right)[/tex]

Gravitational Anomaly:
[tex] \left( \frac{n496}{64} \right) \left[ \frac{1}{5870} trR^6 + \frac{ 1}{4379} trR^2 trR^4 + \frac{ 1}{10346} \left( trR^2 \right) ^3 \right]...[/tex]
[tex]... + \frac{ 1}{864} trR^2 trR^4 + \frac{ 1}{1536} \left( trR^2 \right) ^3[/tex]

Yang-Mills Anomaly:
[tex]- \frac{ 1}{15} \left( p - 32 \right) trF^6 +15 \left( p - 2 \right) tr F^2 \left( \left( p - 8 \right) trF^4 + 3 \left(trF^2 \right) ^2 \right)[/tex]

[tex]p = 32[/tex]
[tex]n = \frac{ 1}{2} p \left( p - 1 \right) \left( for SO \left( p \right) \right)[/tex]
[tex]n = \frac{1}{2} \left( 32 \right) \left( 31 \right)[/tex]
[tex]n = 496[/tex]

Note! These equasions have not been compiled completely accurately with the actual equasions. If anyone has more accurate equasions, please post them in latex format and I will amend my source code.

These equasions contain 'anomalies'.


Phys.Org News Partner Physics news on
Physical constant is constant even in strong gravitational fields
Physicists provide new insights into the world of quantum materials
Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays

Register to reply

Related Discussions
Infrared cancellation in QED General Physics 6
Pseudo real grps and anomaly cancellation... Beyond the Standard Model 0
Anomaly Cancellation High Energy, Nuclear, Particle Physics 2
Cancellation Law General Math 5