Why isn't the Lagrangian invariant under ##\theta## rotations?

In summary: V(r)$$In summary, the Lagrangian of a particle in a radial potential is not invariant under rotations in the ##\theta## direction due to the presence of the sine squared term. This results in only the component ##L_\theta \sin(\theta)## being conserved, rather than angular momentum completely.
  • #1
PhysicsRock
114
18
TL;DR Summary
Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.
I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is

$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$

This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be

$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$

which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.

Why is that?
 
Last edited:
Physics news on Phys.org
  • #2
A movement in the ##\theta## direction isn't a rigid rotation. It maps lines of constant latitude onto each other, and they don't have equal radius. Contrast a rotation in the ##\phi## direction that maps lines of constant longitude onto each other - they are all great circles.

There are Killing fields corresponding to rotations around the ##x## and ##y## axes (assuming rotation around ##z## is the ##\delta\phi## in your post), but they are not so cleanly expressed on spherical polars (slightly surprisingly, I agree).
 
  • Like
Likes strangerep, Dale and malawi_glenn
  • #3
Ibix said:
A movement in the ##\theta## direction isn't a rigid rotation. It maps lines of constant latitude onto each other, and they don't have equal radius. Contrast a rotation in the ##\phi## direction that maps lines of constant longitude onto each other - they are all great circles.

There are Killing fields corresponding to rotations around the ##x## and ##y## axes (assuming rotation around ##z## is the ##\delta\phi## in your post), but they are not so cleanly expressed on spherical polars (slightly surprisingly, I agree).

So it is correct that only ##L_\theta \sin(\theta)## is conserved in such a system?
 
  • #4
PhysicsRock said:
So it is correct that only ##L_\theta \sin(\theta)## is conserved in such a system?
A particle moving in a central potential will have an angular momentum (about the origin), ##\vec L##, that is conserved. The direction of ##\vec L## is perpendicular to the plane of motion of the particle.

Since ##\vec L## remains constant, the projection of ##\vec L## along any fixed axis in the inertial frame will be conserved. The quantity ##mr^2\sin^2\theta \, \dot{\varphi}## is the canonical momentum associated with the variable ##\varphi## and this quantity is the projection of ##\vec L## along the fixed z-axis. So this quantity is conserved.

The quantity ##mr^2 \dot{\theta}## is the canonical momentum associated with the variable ##\theta##. At some instant of time, this quantity is the projection of ##\vec L## along an axis that lies in the x-y plane and makes an angle ##\varphi## to the y-axis. But this axis is not a fixed axis (in general) since ##\varphi## will vary with time (in general). Thus, ##mr^2 \dot{\theta}## is generally not conserved.

I don't know if this helps.
 
  • Like
Likes Ibix and malawi_glenn
  • #5
TSny said:
A particle moving in a central potential will have an angular momentum (about the origin), ##\vec L##, that is conserved. The direction of ##\vec L## is perpendicular to the plane of motion of the particle.

Since ##\vec L## remains constant, the projection of ##\vec L## along any fixed axis in the inertial frame will be conserved. The quantity ##mr^2\sin^2\theta \, \dot{\varphi}## is the canonical momentum associated with the variable ##\varphi## and this quantity is the projection of ##\vec L## along the fixed z-axis. So this quantity is conserved.

The quantity ##mr^2 \dot{\theta}## is the canonical momentum associated with the variable ##\theta##. At some instant of time, this quantity is the projection of ##\vec L## along an axis that lies in the x-y plane and makes an angle ##\varphi## to the y-axis. But this axis is not a fixed axis (in general) since ##\varphi## will vary with time (in general). Thus, ##mr^2 \dot{\theta}## is generally not conserved.

I don't know if this helps.
It does help a lot. Thank you.
 
  • #6
PhysicsRock said:
TL;DR Summary: Lagrangian of a particle in radial potential isn't invariant under ##\theta## rotations.

I just calculated the Lagrangian of a particle of mass ##m## in a radially symmetric potential ##V(r)##. I thought it would be a good idea to switch to spherical coordinates for that matter. What I get is

$$
L = \frac{1}{2} m \left( \dot{r}^2 + r^2 \dot{\theta}^2 + r^2 \dot{\varphi}^2 \sin^2(\theta) \right) - V(r)
$$

This is typically a well-known result and I am very confident that it's correct. We instantly see that this Lagrangian does not depend on ##\varphi##, only on it's time derivative. Thus, we can introduce an infinitesimal rotational shift ##\delta\varphi##, which will not change the Lagrangian. However, a shift ##\delta\theta## does not leave this expression invariant, since ##\theta## explicitly appears in the Lagrangian. With radial symmetry though, I would expect that both angles can be altered infinitesimally without changing the physics of the system. Since ##\theta## appears in the sine squared term, we could introduce a discrete shift ##\delta\theta = n \pi## with ##n \in \mathbb{N}##. This, however, would not yield a conservation law, since Noether's theorem demands continuous symmetries. I would've expected that angular momentum is conserved here, but using said theorem, the only conserved quantity here would be

$$
\frac{d}{dt} \left( m r^2 \dot{\varphi} \sin^2(\theta) \right) = 0
$$

which looks like a component of angular momentum (EDIT: it is in fact the ##L_\theta## component), but not angular momentum completely.

Why is that?
From a symmetry point of view, it's because with spherical coordinates you introduce a perferred direction, i.e., the direction of the polar axis, along which the spherical coordinates are singular.

Rotational invariance is better expressed in terms of Cartesian coordinates. An infinitesimal rotation is defined by
$$\delta t=0, \quad \delta \vec{r} = \delta \vec{\varphi} \times \vec{r}.$$
Full rotation symmetry means you can take ##\delta \vec{\varphi}## in an arbitrary direction, and the Lagrangian invariant under this infinitesimal rotation.

By introducing spherical coordinates you distinguish one direction by introducing the polar axis, and the full rotation symmetry is thus broken to the symmetry under rotations only around the polar axis, and this residual symmetry is parametrized by ##\varphi##, which is thus a cyclic variable for a particle in a central potential.
 
  • Like
  • Love
Likes PhysicsRock, Ibix and malawi_glenn

1. Why is the Lagrangian not invariant under ##\theta## rotations?

The Lagrangian is not invariant under ##\theta## rotations because it is a function of the coordinates and velocities of a system, and these quantities change under rotations. This means that the Lagrangian will have a different value before and after a rotation, breaking its invariance.

2. How does the Lagrangian change under rotations?

Under rotations, the coordinates and velocities of a system are transformed according to the rotation matrix. This means that the Lagrangian, which is a function of these quantities, will also be transformed. The specific form of this transformation depends on the Lagrangian itself.

3. What is the significance of the Lagrangian not being invariant under rotations?

The invariance of the Lagrangian under rotations is important because it is related to the conservation of angular momentum. When the Lagrangian is not invariant, it means that the system's angular momentum is not conserved, and this can have implications for the behavior of the system.

4. Can the Lagrangian be made invariant under rotations?

In some cases, the Lagrangian can be made invariant under rotations by introducing additional terms or constraints. However, in general, it is not possible to make the Lagrangian invariant under all types of rotations without sacrificing other important properties of the system.

5. How does the lack of invariance under rotations affect the equations of motion?

Since the Lagrangian is used to derive the equations of motion for a system, its lack of invariance under rotations will also affect these equations. This means that the equations of motion will not be the same before and after a rotation, and the system's behavior may be different depending on its orientation.

Similar threads

  • Classical Physics
Replies
26
Views
1K
  • Classical Physics
Replies
1
Views
1K
Replies
30
Views
2K
Replies
1
Views
577
Replies
6
Views
953
Replies
2
Views
763
Replies
3
Views
741
  • Introductory Physics Homework Help
Replies
7
Views
218
Replies
3
Views
497
Replies
16
Views
2K
Back
Top