Register to reply

Ratio of 2 Gamma distributions

by jimmy1
Tags: distributions, gamma, ratio
Share this thread:
Mar4-07, 05:30 AM
P: 61
If X and Y are gamma distributed random variables, then the ratio X/Y, I was told follows a beta distribution, but all I can find so for is that the ratio X/(X+Y) follows a beta distrinbution.
So is it true that X/Y follows a beta distribution?
Phys.Org News Partner Science news on
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
Mar4-07, 06:04 AM
P: 61
Ok, I found the answer (just had a bit of a brain freeze!!). It is X/(X+Y), and not X/Y
Mar4-07, 01:20 PM
P: 371
X/Y does follow a beta distribution! (Assuming they have the same second parameter. This is very important). It's called the beta distribution of the second kind with parameters alpha_x and alpha_y. The F distribution is simply b*X/Y where b>0.

I'll show you why X/Y is called the beta distribution of the second kind.

Suppose X~[tex]\Gamma(\alpha_1,\beta)[/tex] and Y~[tex]\Gamma(\alpha_2,\beta)[/tex], X and Y independent. What is the distribution of [tex]U_1=\frac{X}{Y}[/tex]?

Now this is a multivariate transformation, ( see here if you don't know how to do these), so we will use [tex]U_2=Y[/tex] as an auxillary equation.

So, [tex]g_1(x,y)=x/y[/tex] and [tex]g_2(x,y)=y[/tex] where x,y are positive reals (because they come from a gamma distribution) now it should be clear to see that [tex]g_1^{-1}(x,y)=xy[/tex] and [tex]g_2^{-1}(x,y)=y[/tex]. Note how g_1 and g_2 have range (0,+infty).

Therefore, [tex]f_{(U_1,U_2)}(u_1,u_2)=f_{(x,y)}(g_1^{-1}(u_1,u_2),g_2^{-1}(u_1,u_2))|J|[/tex]. As an exercise you can show that [tex]|J|=u_2[/tex]

Since X and Y are independent [tex]f_{(X,Y)}=f_X f_Y[/tex]

Now [tex]f_{(U_1,U_2)}(u_1,u_2)=f_x(u_1u_2)f_y(u_2)u_2=\frac{e^{-\frac{1}{\beta}(1+u_1)u_2}u_1^{\alpha_1-1}u_2^{\alpha_1+\alpha_2-1}}{\beta^{\alpha_1+\alpha_2}\Gamma(\alpha_1)\Gamma(\alpha_2)}[/tex]

(I have done some simplifying)

Now, we don't want the pdf of (U_1,U_2) we want the pdf of U_1, so we integrate over the joint to get the marginal distribution of U_1.

[tex]f_{U_1}(u_1)=\frac{u_1^{\alpha_1-1}}{\beta^{\alpha_1+\alpha_2}\Gamma(\alpha_1)\Gamma(\alpha_2)}\int_0^{+ \infty}u_2^{\alpha_1+\alpha_2-1}e^{-\frac{1}{\beta}(1+u_1)u_2}du_2[/tex]

But the integral is just a gamma function (after we change variables). So this means that [tex]\int_0^{+\infty}u_2^{\alpha_1+\alpha_2-1}e^{-\frac{1}{\beta}(1+u_1)u_2}du_2=\frac{\Gamma(\alpha_1+\alpha_2)\beta^{\a lpha_1+\alpha_2}}{(1+u_1)^{\alpha_1+\alpha_2}}[/tex].

Plugging this in we get [tex]f_{U_1}(u_1)=\frac{\Gamma(\alpha_1+\alpha_2)u_1^{\alpha_1-1}}{\Gamma(\alpha_1)\Gamma(\alpha_2)(1+u_1)^{\alpha_1+\alpha_2}}=\frac{ u_1^{\alpha_1-1}}{\beta(\alpha_1,\alpha_2)(1+u_1)^{\alpha_1+\alpha_2}}[/tex]

So there we go! U_1=X/Y is distributed as that. Now why is this called a beta distribution of the second kind? If you do some transformations you should see that [tex]\beta(\alpha_1,\alpha_2)=\int_0^1x^{\alpha_1}(1-x)^{\alpha_2-1}dx=\int_0^{+\infty}\frac{x^{\alpha_1-1}}{(1+x)^{\alpha_1+\alpha_2}}dx[/tex]

I hope someone finds this interesting ;0

Jan25-10, 02:43 AM
P: 1
Ratio of 2 Gamma distributions

I desperately need a proof of the fact that x/(x+y) has a beta distribution.
SW VandeCarr
Jan25-10, 10:35 PM
P: 2,501
Quote Quote by alexis_k View Post
I desperately need a proof of the fact that x/(x+y) has a beta distribution.
The mean of the beta distribution is [tex] \mu=\frac{\alpha}{\alpha+\beta}[/tex]. Does this help you?

Edit: Look up the PDF and the MGF of the beta distribution. I assume you know the relationship between the gamma and beta functions. By the way, just saying x/(x+y) doesn't mean much by itself. I'm assuming it's relevant to the ratio of two independent gamma distributions.

Register to reply

Related Discussions
Mass Ratio to Mole Ratio Biology, Chemistry & Other Homework 3
Ratio simplification using ratio series. Calculus & Beyond Homework 7
Relation of g^uv = (1/2) {gamma^u,gamma^v} to gravitational fields General Physics 15
Gamma Function, Gamma 1/2=root pi Calculus & Beyond Homework 4