Register to reply

Non-uniform line charge density with r not constant

by bravo340
Tags: charge, constant, density, line, nonuniform
Share this thread:
bravo340
#1
Sep27-07, 09:26 PM
P: 1
1. The problem statement, all variables and given/known data

We have a non uniform line charge density [tex]P_{l}[/tex] = [tex]\rho_{l}[/tex] cos[tex]\phi[/tex]

It is a spiral line where 0 [tex]\leq[/tex] [tex]\phi[/tex] [tex]\leq[/tex] 4 [tex]\pi[/tex]

It is on the x-y plane with z=0.

r varies: r ( [tex]\phi[/tex] ) = [tex]\phi[/tex] * [tex]r_{0}[/tex] + a

We need to find the Potential and Electric Field at the origin.

2. Relevant equations

V = (KQ/r)

E = (KQ)/ r[tex]^{2}[/tex]

E = -[tex]\nabla[/tex]V


3. The attempt at a solution

The east way would be to find the Potential and then to find the Electric Field by using the relationship between E and the gradient of V.

I think this problem wouldn't be as tough if r was constant.
Phys.Org News Partner Science news on Phys.org
Scientists develop 'electronic nose' for rapid detection of C. diff infection
Why plants in the office make us more productive
Tesla Motors dealing as states play factory poker
Mindscrape
#2
Sep27-07, 10:05 PM
P: 1,874
So are you going to use a line integral? I suggest cylindrical coordinates.

Also, I don't know what phi is, the polar angle or some constant? Oh, nevermind I see where r is bounded. You still need to show some work before you get any help.
JoAuSc
#3
Sep27-07, 10:11 PM
P: 200
I've tried it, and I have gotten to the point where I have an integral that determines the potential at this point. Here's how I got this far:

For a bunch of separate point charges, we have

[tex]V = \sum {\frac {-1}{4 \pi \epsilon_{o} } \frac {q_i}{r_i} }[/tex]
where I've replaced [tex]\rho_l[/tex] with [tex]\lambda[/tex] to make things easier for me. (Sometimes [tex]\rho[/tex] denotes the radial distance.)

For a line, we replace [tex]q[/tex] with [tex]d \lambda[/tex] and integrate. To do this, we need to replace [tex]d \lambda[/tex] with something with [tex]d \phi[/tex] in it; I'll leave the details up to you. We replace [tex]r[/tex] with your formula for [tex]r[/tex].

Mindscrape
#4
Sep27-07, 10:14 PM
P: 1,874
Non-uniform line charge density with r not constant

Can I fix your formulas too?

[tex] V = k \int_{\Omega} \frac{\rho(\mathbf{r'})}{||\mathbf{r} - \mathbf{r'}||} d\gamma'[/tex]

Which would specifically be

[tex] V = k \int_l \frac{\lambda(\mathbf{r'})}{||\mathbf{r} - \mathbf{r'}||} dl'[/tex]

for a line charge.


Register to reply

Related Discussions
How can a conductor of uniform charge density exist Classical Physics 7
Induced charge density by non-uniform dipole density in dielectric?! Classical Physics 1
Uniform Charge Density Introductory Physics Homework 2
Uniform Density Charge Problem Introductory Physics Homework 3
Gaussian surface, and uniform charge density Introductory Physics Homework 3