trewsx7 said:
Actually, I think your previous post on the thread, in which you said this:
...answers the photon's POV question quite nicely. From what I understand then is that a photon experiences all of its past, present, and future moments simultateneouly, correct?
No, I think a photon would only experience the point in the observer's time corresponding to the photon's emission (what the observer would call the past). The photon wouldn't know anything about what the observer calls the present or the future.
Let's take a particle emitted from somewhere far away that travels at 99.999% of the speed of light and that is absorbed by the eyeball of a human observer on earth. If the particle was emitted in what the observer calls Jan 1, 1960 and absorbed by his eyeball in what he thinks is 2008, the particle will think that everything in the universe is almost frozen in Jan 1, 1960 ("almost frozen" because its speed is slightly less than the speed of light). If the particle's velocity is constant (i.e. no acceleration), instead of seeing the human that its about to bash into, it'll see whatever was occupying the point in space where the observer's standing back in Jan 1, 1960 (of course, once it actually bashes into the guy's eyeball, it will decelerate to zero very quickly, thus screwing up the picture).
I like to use this model: imagine you have a globe. Now imagine a stationary observer as someone who is on the equator of the globe, and imagine the particle moving at 99.999% of the speed of light as being almost at the north pole. Now imagine both are moving east along their respective line of latitude (the lines that move horizontally across the globe) from the Americas to Europe/Africa. Let this eastward motion represent movement through time. Let "1 second" be represented by the chunk between two neighbouring lines of longitude (the lines that run vertically up and down the globe). As you go up the globe, that chunk that we call 1 second will get narrower and narrower. For the guy at the equator, more stuff will happen during each "1 second". For the particle near the north pole, very little will happen for each "1 second". So the guy at the equator sees the particle close to the north pole hardly changing each second - i.e. almost frozen in time. Think of light as being AT the north pole, and therefore not changing at all during each "1 second".
Meanwhile, the particle close to the north pole thinks it's really at the equator and the guy on Earth is the one close to the north pole (which is a perfectly valid assumption since our designation of north pole and equator is entirely arbitrary) - so it's like spinning the globe around 90 degrees, and the whole thing gets reversed. Now movement from the Americas towards Europe/Africa no longer represents time - instead, time is represented by movement from say Canada down to Antarctica. With this new definition of time, it looks like the guy hardly changes for each "1 second", but the particle changes a lot.
This is why each sees the other as frozen in time while still feeling normal passage of time in its own frame of reference.