Gaseous system: Meaning of this integral eq.


by jam_27
Tags: gaseous, integral, meaning
jam_27
jam_27 is offline
#1
Mar8-09, 04:38 AM
P: 29
What is the physical or statistical meaning of the following integral

[tex]\int^{a}_{o} g(\vartheta) d(\vartheta)[/tex] = [tex]\int^{\infty}_{a} g(\vartheta) d(\vartheta)[/tex]

where [tex]g(\vartheta)[/tex] is a Gaussian in [tex]\vartheta[/tex] describing the transition frequency fluctuation in a gaseous system (assume two-level and inhomogeneous) .

[tex]\vartheta = \omega_{0} -\omega[/tex], where [tex]\omega_{0}[/tex] is the peak frequency and [tex]\omega[/tex] the running frequency.

I understand that the integral finds a point [tex]\vartheta = a[/tex] for which the area under the curve (the Gaussian) between 0 to a and a to [tex]\infty[/tex] are equal.

But is there a statistical meaning to this integral? Does it find something like the most-probable value [tex]\vartheta = a[/tex]? But the most probable value should be [tex]\vartheta = 0[/tex] in my understanding! So what does the point [tex]\vartheta = a[/tex] tell us?

I will be grateful if somebody can explain this and/or direct me to a reference.

Cheers

Jamy
Phys.Org News Partner Physics news on Phys.org
Physicists design quantum switches which can be activated by single photons
'Dressed' laser aimed at clouds may be key to inducing rain, lightning
Higher-order nonlinear optical processes observed using the SACLA X-ray free-electron laser

Register to reply

Related Discussions
Non gaseous human warming Earth 8
can we give a meaning to this integral Calculus 1
Gaseous conductance in COMSOL Mechanical Engineering 11
Integral infinitesimal meaning Calculus 9
Meaning of Line Integral Calculus 3