Register to reply

Geometric arguments

by Ed Quanta
Tags: arguments, geometric
Share this thread:
Ed Quanta
#1
Jun25-04, 11:39 AM
P: 297
I am told that |z1-z2| is the distance between two points z1 and z2 in the complex plane. I have to give a geometric argument that

a) |z-4i| + |z+4i|=10 represents an ellipse whose foci are (0, and positive or negative 4)

b)|z-1|=|z+i| represents the line through the origin whose slope is -1

Now my question is what exactly is a geometric argument, and what is sufficient in showing what I am told to show?
Phys.Org News Partner Mathematics news on Phys.org
Mathematicians analyse new 'racetrack memory' computer device
Children's book explores Really Big Numbers
'Moral victories' might spare you from losing again
Gokul43201
#2
Jun25-04, 11:54 AM
Emeritus
Sci Advisor
PF Gold
Gokul43201's Avatar
P: 11,155
Rewrite the given expression using the language where |z1 - z2| is replaced by the words, "the distance between z1 and z2."

a) Compare the statement this generates with the geometrical definition of an ellipse.

b) Recall the locus that is found to be a perpendicular bisector.
matt grime
#3
Jun25-04, 02:30 PM
Sci Advisor
HW Helper
P: 9,396
alternatively use the fact that (rather than hand waving arguments) |z|= sqrt(x**2+y**2) where z=x+iy is a complex number, x,y real.

Gokul43201
#4
Jun25-04, 04:42 PM
Emeritus
Sci Advisor
PF Gold
Gokul43201's Avatar
P: 11,155
Geometric arguments

Quote Quote by matt grime
alternatively use the fact that (rather than hand waving arguments) |z|= sqrt(x**2+y**2) where z=x+iy is a complex number, x,y real.
|z+4i| + |z-4i| = 10 means that the locus of z is the set of points each of whose sum of distances from two fixed points (4i, -4i) is a constant (=10). Is this not just the same as showing that (x,y) satisfy (x/a)^2 + (y/b)^2 = 1. I don't see how it is any less rigorous, and definitely disagree with your description of it as hand waving. tell me where I'm wrong.
matt grime
#5
Jun25-04, 05:11 PM
Sci Advisor
HW Helper
P: 9,396
when you get round to demonstrating that circles and straight lines are sent to circles and straight lines under mobius transformations you'll appreciate the necessity of the algebraic arguments, though i will agree hand waving is too dismissive.
HallsofIvy
#6
Jun26-04, 10:23 AM
Math
Emeritus
Sci Advisor
Thanks
PF Gold
P: 39,363
From the way the original question was phrased: "give a geometric argument that

a) |z-4i| + |z+4i|=10 represents an ellipse whose foci are (0, and positive or negative 4)"

it's clear (to me, anyway!) that Gokul43201's idea: |z-4i|+ |z+4i|= 10 means that the total distance from z to 4i and -4i is 10: precisely the definition of ellipse, is the intended solution.


Register to reply

Related Discussions
Geometric series/geometric progression Precalculus Mathematics Homework 2
Creationist Arguments. Biology 14
Help with delta arguments... Calculus 6
About anti-evolution arguments General Discussion 1
Two contradictory arguments... Introductory Physics Homework 15