Proof of limit involving square root


by courtrigrad
Tags: involving, limit, proof, root, square
courtrigrad
courtrigrad is offline
#1
Nov11-04, 09:27 PM
P: 1,239
Hello all

I am having trouble proving the limit of the following:

lim sqrt(( n+1) - sqrt(n)) * sqrt(n+ 1/2 ) = 1/2
n --> 00



I tried using the fact the the limit of the first factor as n approaches infinity is 0. Then I tried expressing the first factor as

1 / sqrt(n+1) + sqrt(n) and doing the same thing for the other



factor. However I always get stuck.


Any help would be greatly appreciated!
Phys.Org News Partner Science news on Phys.org
NASA's space station Robonaut finally getting legs
Free the seed: OSSI nurtures growing plants without patent barriers
Going nuts? Turkey looks to pistachios to heat new eco-city
Tide
Tide is offline
#2
Nov11-04, 10:58 PM
Sci Advisor
HW Helper
P: 3,149
As you have written the expression the limit does not exist. I suspect you meant something else.
courtrigrad
courtrigrad is offline
#3
Nov12-04, 03:17 PM
P: 1,239
lim (sqrt( n+1) - sqrt(n)) * sqrt(n+ 1/2 ) = 1/2
n --> 00

Yegor
Yegor is offline
#4
Nov12-04, 03:36 PM
P: 149

Proof of limit involving square root


I trhink so:
lim (sqrt( n+1) - sqrt(n)) * sqrt(n+ 1/2 ) =
=lim (sqrt( n+1) - sqrt(n)) *(sqrt( n+1) + sqrt(n)) * sqrt(n+ 1/2 ) /(sqrt( n+1) + sqrt(n)) = lim sqrt(n+ 1/2 )/(sqrt( n+1) + sqrt(n))=1/2
NateTG
NateTG is offline
#5
Nov12-04, 04:47 PM
Sci Advisor
HW Helper
P: 2,538
Quote Quote by courtrigrad
lim (sqrt( n+1) - sqrt(n)) * sqrt(n+ 1/2 ) = 1/2
n --> 00
[tex]\lim_{n\rightarrow \infty} (\sqrt{n+1} - \sqrt{n}) \sqrt{n+\frac{1}{2}}=[/tex]
[tex]\lim_{n\rightarrow \infty} \frac{((n+1)-n)\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}}=[/tex]
[tex]\lim_{n\rightarrow \infty} \frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}}=[/tex]

Now
[tex]2 \sqrt{n+1} > \sqrt{n+1} + \sqrt{n} > 2 \sqrt{n}[/tex]
so
[tex]\frac{\sqrt{n+\frac{1}{2}}}{2\sqrt{n+1}} < \frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}} <
\frac{\sqrt{n+\frac{1}{2}}}{2\sqrt{n}}[/tex]
so
[tex]\lim_{n\rightarrow \infty} \frac{\sqrt{n+\frac{1}{2}}}{2\sqrt{n+1}} \leq \lim_{n\rightarrow \infty} \frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}} \leq \frac{1}{2}\lim_{n\rightarrow \infty}\frac{\sqrt{n+\frac{1}{2}}}{2\sqrt{n}} [/tex]
so
[tex]\lim_{n\rightarrow \infty} \frac{1}{2}\sqrt{\frac{n+\frac{1}{2}}{n+1}} \leq \lim_{n\rightarrow \infty}\frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}} \leq \frac{1}{2}\lim_{n\rightarrow \infty}\sqrt{\frac{n+\frac{1}{2}}{n}}[/tex]
[tex]\frac{1}{2}\lim_{n\rightarrow \infty} \sqrt{1 - \frac{\frac{1}{2}}{n+1}} \leq \lim_{n\rightarrow \infty} \frac{1}{2} \frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}} \leq\lim_{n\rightarrow \infty} \frac{1}{2}\sqrt{1 + \frac{\frac{1}{2}}{n}}[/tex]
But now the limits on the RHS and LHS are pretty obviously 1 so we have:
[tex]\frac{1}{2} \leq \lim_{n\rightarrow \infty}\frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}} \leq \frac{1}{2}[/tex]
so the limit is [tex]\frac{1}{2}[/tex]
courtrigrad
courtrigrad is offline
#6
Nov13-04, 10:20 AM
P: 1,239
Thanks a lot for the very elegant solution!!!
maverick280857
maverick280857 is offline
#7
Nov14-04, 03:05 AM
P: 1,772
Quote Quote by NateTG
[tex]\lim_{n\rightarrow \infty} (\sqrt{n+1} - \sqrt{n}) \sqrt{n+\frac{1}{2}}=[/tex]
[tex]\lim_{n\rightarrow \infty} \frac{((n+1)-n)\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}}=[/tex]
[tex]\lim_{n\rightarrow \infty} \frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}}=[/tex]
Actually I'd just stop there (I'm not saying Nate's solution is large or anything but here's another way to "see" where the limit is going). I'd then divide the numerator and the denominator by the square root of n to get

[tex]\lim_{n\rightarrow \infty} \frac{\sqrt{n+\frac{1}{2}}}{\sqrt{n+1}+\sqrt{n}} = \lim_{n\rightarrow \infty} \frac{\sqrt{1+\frac{1}{2n}}}{\sqrt{1+\frac{1}{n}}+1} [/tex]

Taking limits gives (1/2) as the answer. You can recognize the original limit as an indeterminate form and divide by the arbitrarily growing variable n to get to the same thing.

I should mention however, that the sandwiching approach used by NateTG is far more elegant than this "trick" here (which gives you the answer but not an insight).

Cheers
Vivek


Register to reply

Related Discussions
Yes or no, Can you square root a zero Precalculus Mathematics Homework 11
[SOLVED] Re: Integral involving square root of e^x Calculus & Beyond Homework 6
what is the square root of i^2 General Math 8
Square root of 3? Brain Teasers 8
Square root General Math 13