Register to reply

EL Equations for the modified electromagnetic field Lagrangian

Share this thread:
Irrational
#1
Apr16-12, 10:51 AM
P: 47
Hi,

I'm trying to work through something and it should be quite simple but somehow i've gotten a bit confused.

I've worked through the Euler Lagrange equations for the lagrangian:

[tex]
\begin{align*}
\mathcal{L}_{0} &= -\frac{1}{4}(\partial_{\mu}A_{\nu})(\partial^{\mu}A^{\nu}) \\
&= \frac{1}{4}F_{\mu\nu}F^{\mu\nu}
\end{align*}
[/tex]

getting:

[tex]\Box A_{\nu} - \partial^{\nu}\partial_{\mu}A^{\mu} = 0[/tex]

I'm ok with this.

Then considering the modified lagrangian:

[tex]\mathcal{L}_{\xi} = \mathcal{L}_{0} + \frac{\lambda}{2}(\partial_{\sigma}A^{\sigma})^2[/tex]

I'm trying to work out the EL equation components and as part of one of these calculations, I've to calculate:

[tex]
\begin{align*}
\frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ \frac{\lambda}{2} (\partial_{\sigma}A^{\sigma})^2 \right]

&= \frac{\lambda}{2} \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ ( \partial_{\sigma}A^{\sigma} ) ( \partial_{\rho}A^{\rho} ) \right] \\

&= \frac{\lambda}{2} \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ ( \partial_{\sigma}A_{\alpha} \eta^{\sigma \alpha} ) ( \partial_{\rho}A_{\beta} \eta^{\rho \beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} \left[ ( \partial_{\sigma}A_{\alpha} ) ( \partial_{\rho}A_{\beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \left[ ( \partial_{\sigma}A_{\alpha} ) \left( \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} ( \partial_{\rho}A_{\beta} ) \right) + \left( \frac{\partial}{\partial(\partial_{\mu}A_{\nu})} ( \partial_{\sigma}A_{\alpha} ) \right) ( \partial_{\rho}A_{\beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \left[ ( \partial_{\sigma}A_{\alpha} ) \delta^{\mu}_{\rho} \delta^{\nu}_{\beta} + \delta^{\mu}_{\sigma} \delta^{\nu}_{\alpha} ( \partial_{\rho}A_{\beta} ) \right] \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} ( \partial_{\sigma}A_{\alpha} ) \delta^{\mu}_{\rho} \delta^{\nu}_{\beta}
+
\frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\rho \beta} \delta^{\mu}_{\sigma} \delta^{\nu}_{\alpha} ( \partial_{\rho}A_{\beta} ) \\

& = \frac{\lambda}{2} \eta^{\sigma \alpha} \eta^{\mu \nu} ( \partial_{\sigma}A_{\alpha} )
+
\frac{\lambda}{2} \eta^{\mu \nu} \eta^{\rho \beta} ( \partial_{\rho}A_{\beta} ) \\

& = \frac{\lambda}{2} \eta^{\mu \nu} \left[ ( \partial_{\sigma}A^{\sigma} )
+
( \partial_{\rho}A^{\rho} ) \right] \\

& = \lambda \eta^{\mu \nu} ( \partial_{\sigma}A^{\sigma} ) \\

\end{align*}
[/tex]

Now I was hoping to get:

[tex]
\lambda \partial^{\nu} A^{\mu}
[/tex]

as ultimately I need the EL equations to give me:

[tex]
\begin{align*}
\frac{\partial \mathcal{L}_{\xi}}{\partial A_{\nu}} - \partial_{\mu} \left( \frac{\partial \mathcal{L}_{\xi}}{\partial (\partial_{\mu} A_{\nu})} \right)
&=\Box A^{\nu} - \partial^{\nu} ( \partial_{\mu} A^{\mu} ) - \lambda \partial^{\nu}(\partial_{\mu} A^{\mu}) \\
&= \Box A^{\nu} - ( 1 + \lambda ) \partial^{\nu} ( \partial_{\mu} A^{\mu} ) \\
&= 0
\end{align*}
[/tex]

Can anyone show me where i've gone wrong? I didn't stick this in the homework section as it's not homework. I'm just trying to work through the through missing steps from the text i'm reading.

Thanks in advance
Phys.Org News Partner Physics news on Phys.org
Physical constant is constant even in strong gravitational fields
Physicists provide new insights into the world of quantum materials
Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays
Irrational
#2
Apr16-12, 10:51 AM
P: 47
edit... now i'm finished stating the question.
Bill_K
#3
Apr16-12, 04:20 PM
Sci Advisor
Thanks
Bill_K's Avatar
P: 4,160
Irrational, You've got exactly what you need. Well, up to a minus sign anyway. You've got λ ημν(∂σAσ). So plug this into the Euler-Lagrange equation:
-∂μ(λ ημν(∂σAσ)) = -λ ∂ν(∂σAσ) = -λ ∂ν(∂μAμ)

Irrational
#4
Apr16-12, 04:54 PM
P: 47
EL Equations for the modified electromagnetic field Lagrangian

you have no idea how thick i feel right now. thanks for filling in the gap.


Register to reply

Related Discussions
Lagrangian for electromagnetic field Classical Physics 2
Electromagnetic lagrangian Advanced Physics Homework 1
Electromagnetic Lagrangian Advanced Physics Homework 3
Electromagnetic lagrangian Classical Physics 1
Why is the Electromagnetic Field Tensor in the QED Lagrangian? Quantum Physics 5