Register to reply

Hamiltonian math

by DiracPool
Tags: hamiltonian, math
Share this thread:
DiracPool
#1
Dec9-12, 12:09 AM
P: 534
I'm watching a lecture on the Hamiltonian and can't figure out something. Here it is. Take a generic function G, and differentiate it with respect to p and q. What you get is the partial of G with respect to p TIMES the derivative of p (or p-dot), plus the derivative of G with respect to q TIMES q-dot.

My question is, where does the p-dot and q-dot terms come into the equation here? Why isn't it just the partial of G over p plus the partial of G over q?
Phys.Org News Partner Physics news on Phys.org
'Comb on a chip' powers new atomic clock design
Quantum leap in lasers brightens future for quantum computing
Enhanced NIST instrument enables high-speed chemical imaging of tissues
jtbell
#2
Dec9-12, 12:30 AM
Mentor
jtbell's Avatar
P: 11,593
What you've described looks like taking the derivative of G(p,q) with respect to t, using the chain rule:

$$\frac{dG(p,q)}{dt} = \frac{\partial G}{\partial p} \frac{dp}{dt} + \frac{\partial G}{\partial q} \frac{dq}{dt}$$
DiracPool
#3
Dec9-12, 12:52 AM
P: 534
It certainly does, thanks jtbell.


Register to reply

Related Discussions
How to convert this time-dependent Hamiltonian to time-independent Hamiltonian? Quantum Physics 0
Commutator of the Hamiltonian with Position and Hamiltonian with Momentum Advanced Physics Homework 2
Hamiltonian systems, integrability, chaos and MATH Classical Physics 2
Consider a particle moving in x-v phase space General Physics 1
Hamiltonian math problem Advanced Physics Homework 27