Recent content by Kosh11
-
K
Solve Circulant Matrix Homework Equations
Thanks I figured that part out. I have another question regarding part 2. http://i.imgur.com/DnLXH.png So I worked out the eigenvalues of that matrix to be 0,2,1-i,1+i. Since these are all unique eigenvalues there will be 4 linearly independent eigenvectors. But I'm not sure how to generalize...- Kosh11
- Post #5
- Forum: Calculus and Beyond Homework Help
-
K
Solve Circulant Matrix Homework Equations
Homework Statement http://i.imgur.com/ivZSA.png Homework Equations The Attempt at a Solution This is my attempt http://i.imgur.com/ycuER.png However I think I am doing something very wrong. My thought process is that to prove it is eigenvector is to apply X to the proposed eigenvector and...- Kosh11
- Thread
- Matrix
- Replies: 5
- Forum: Calculus and Beyond Homework Help
-
K
Solving Unintuitive Homework: An Example of C ≠ f^(-1)(f(c))
Thanks I kind of figured it out. One questions would a differentiable map be considered an example where if you have f(a) = d then then f^(-1)(f(a)) wouldn't necessarily equal a?- Kosh11
- Post #3
- Forum: Calculus and Beyond Homework Help
-
K
Solving Unintuitive Homework: An Example of C ≠ f^(-1)(f(c))
Homework Statement Homework Equations The Attempt at a Solution I don't know how to start a proof for this. Intuitively I would think think that C = f^(-1)(f(c)), which would imply that C is a subset of f^(-1)(f(c)), however that is not the case and the problem asks for an...- Kosh11
- Thread
- Example Homework
- Replies: 3
- Forum: Calculus and Beyond Homework Help
-
K
Evaluating Vector Spaces: V = {(0,1), (1,0)}
Homework Statement Are the following vector spaces over \Re, with the usual notion of addition and scalar multiplication: V = {(0, 1), (1, 0)} Homework Equations definition of vector space The Attempt at a Solution I'm a little confused by what this means. Am I correcting in...- Kosh11
- Thread
- Vector Vector spaces
- Replies: 2
- Forum: Calculus and Beyond Homework Help