Maple Comparing G_{11} Solutions: Maple, Mathematica, and References 1-4

  • Thread starter Thread starter Orion1
  • Start date Start date
  • Tags Tags
    Einstein Tensor
AI Thread Summary
The discussion centers on the comparison of the G_{11} component solutions generated by different computational packages for the Schwarzschild metric. Maple 13 and Mathematica 6 provide differing results, with Mathematica's output including an extra factor of e^{-\lambda}. Participants highlight discrepancies in the definitions and conventions used in the calculations, particularly regarding the Einstein tensor and the Riemann tensor. There is a consensus that the differences may stem from the underlying mathematical frameworks of the software packages. The conversation emphasizes the importance of consistency in notation and definitions when comparing results from different sources.
Orion1
Messages
961
Reaction score
3

Schwarzschild metric:
c^{2} d\tau^{2} = e^{\nu(r)} dt^{2} - e^{\lambda(r)} dr^{2} - r^2 d\theta^{2} - r^2 \sin^2 \theta d\phi^2

According to reference 1, the Maple 13 'tensor' package generated this solution for the G_{11}[/tex] component:<br /> G_{11} = \frac{- r \nu&amp;#039; + e^{\lambda} - 1}{r^2}<br /> <br /> According to reference 2, the Mathematica 6 &#039;Einsteintensor&#039; package generated this solution for the G_{11}[/tex] component:&lt;br /&gt; G_{11} = \frac{e^{-\lambda} (-r \nu&amp;amp;#039; + e^{\lambda} - 1)}{r^2}&lt;br /&gt; &lt;br /&gt; According to reference 3 - eq. series 7, the solution for the G_{11}[/tex] component:&amp;lt;br /&amp;gt; G_{11} = \frac{\nu&amp;amp;amp;#039;}{r} - \frac{e^{\lambda}}{r^2} + \frac{1}{r^2}&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; According to reference 4 - eq. 4, the solution for the G_{11} component:&amp;lt;br /&amp;gt; G_{11} = \frac{e^{-\lambda} (r \nu&amp;amp;amp;#039; - e^{\lambda} + 1)}{r^2}&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Which G_{11} component is the correct solution?&amp;lt;br /&amp;gt; [/Color]&amp;lt;br /&amp;gt; Reference:&amp;lt;br /&amp;gt; &amp;lt;a href=&amp;quot;https://www.physicsforums.com/showpost.php?p=2543074&amp;amp;amp;postcount=1&amp;amp;quot;&amp;quot; class=&amp;quot;link link--internal&amp;quot;&amp;gt;https://www.physicsforums.com/showpost.php?p=2543074&amp;amp;amp;postcount=1&amp;amp;quot;&amp;lt;/a&amp;gt;&amp;lt;br /&amp;gt; &amp;lt;a href=&amp;quot;https://www.physicsforums.com/showpost.php?p=2547561&amp;amp;amp;postcount=2&amp;amp;quot;&amp;quot; class=&amp;quot;link link--internal&amp;quot;&amp;gt;https://www.physicsforums.com/showpost.php?p=2547561&amp;amp;amp;postcount=2&amp;amp;quot;&amp;lt;/a&amp;gt;&amp;lt;br /&amp;gt; http://www.bergshoeff.fmns.rug.nl/gr/form1.pdf&amp;amp;quot; &amp;lt;br /&amp;gt; http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a87_195.pdf&amp;amp;quot;
 
Last edited by a moderator:
Physics news on Phys.org
Orion1 said:
Schwarzschild metric:
c^{2} d\tau^{2} = e^{\nu(r)} dt^{2} - e^{\lambda(r)} dr^{2} - r^2 d\theta^{2} - r^2 \sin^2 \theta d\phi^2

According to reference 1, the Maple 13 'tensor' package generated this solution for the G_{11}[/tex] component:<br /> G_{11} = \frac{- r \nu&amp;#039; + e^{\lambda} - 1}{r^2}<br /> <br /> According to reference 2, the Mathematica 6 &#039;Einsteintensor&#039; package generated this solution for the G_{11}[/tex] component:&lt;br /&gt; G_{11} = \frac{e^{-\lambda} (-r \nu&amp;amp;#039; + e^{\lambda} - 1)}{r^2}&lt;br /&gt; &lt;br /&gt; According to reference 3 - eq. series 7, the solution for the G_{11}[/tex] component:&amp;lt;br /&amp;gt; G_{11} = \frac{\nu&amp;amp;amp;#039;}{r} - \frac{e^{\lambda}}{r^2} + \frac{1}{r^2}&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; According to reference 4 - eq. 4, the solution for the G_{11} component:&amp;lt;br /&amp;gt; G_{11} = \frac{e^{-\lambda} (r \nu&amp;amp;amp;#039; - e^{\lambda} + 1)}{r^2}&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Which G_{11} component is the correct solution?&amp;lt;br /&amp;gt; [/Color]&amp;lt;br /&amp;gt; Reference:&amp;lt;br /&amp;gt; &amp;lt;a href=&amp;quot;https://www.physicsforums.com/showpost.php?p=2543074&amp;amp;amp;postcount=1&amp;amp;quot;&amp;quot; class=&amp;quot;link link--internal&amp;quot;&amp;gt;https://www.physicsforums.com/showpost.php?p=2543074&amp;amp;amp;postcount=1&amp;amp;quot;&amp;lt;/a&amp;gt;&amp;lt;br /&amp;gt; &amp;lt;a href=&amp;quot;https://www.physicsforums.com/showpost.php?p=2547561&amp;amp;amp;postcount=2&amp;amp;quot;&amp;quot; class=&amp;quot;link link--internal&amp;quot;&amp;gt;https://www.physicsforums.com/showpost.php?p=2547561&amp;amp;amp;postcount=2&amp;amp;quot;&amp;lt;/a&amp;gt;&amp;lt;br /&amp;gt; http://www.bergshoeff.fmns.rug.nl/gr/form1.pdf&amp;amp;quot; &amp;lt;br /&amp;gt; http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a87_195.pdf&amp;amp;quot;
&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Maple is always the master of all! I calculated G&amp;lt;sub&amp;gt;11&amp;lt;/sub&amp;gt; by hand and got exactly the same result as Maple!&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; Edit: The result from Mathematica has an extra factor e^{-\lambda} which along with the computation obtained by Krori and Borgohain are worst. But the third calculation doesn&amp;amp;#039;t seem to be wrong as it is just the result obtained by Maple with a flipped sign: this comes from the fact that one uses, for example, D&amp;amp;#039;inverno&amp;amp;#039;s definition of Riemann tensor, but the other uses Weinberg&amp;amp;#039;s!&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; AB
 
Last edited by a moderator:
Using my self-made GR package in Maple, I get the same result as Maple.
 
Are you sure this is an apples-apples comparison? E.g., in the ctensor package used with Maxima, which is what I'm familiar with, I believe it outputs G^i_j, not G_{ij}, and the order of indices on Christoffel symbols is also goofy. The order of indices on the Riemann tensor is not standardized at all in the literature.
 
a theoretical problem...


There is a theoretical problem, the Einstein_tensor used by Krori and Borgohain (1974) is the same Einstein_tensor used by J.R. Oppenheimer and G.M. Volkoff (1939) and R.C. Tolman (1939) and used to derive the Tolman-Oppenheimer-Volkoff (TOV) equation and is based upon an incorrect Einstein tensor.

Derivation of the Tolman-Oppenheimer-Volkoff (TOV) equation...

Einstein field equation:
\frac{8 \pi G}{c^4} T_{11} = G_{11}

Tolman Einstein tensor: (ref. 2 - eq. 4)
G_{11} = e^{-\lambda} \left(\frac{\nu &#039;}{r} + \frac{1}{r^2} \right) - \frac{1}{r^2}

Integration via substitution:
\frac{8 \pi G}{c^4} T_{11} = e^{-\lambda} \left(\frac{\nu &#039;}{r} + \frac{1}{r^2} \right) - \frac{1}{r^2}

Differential Equation of State for hydrostatic equilibrium: (ref. 2 - eq. 6)
\frac{dP(r)}{dr} = - \frac{(T_{11} + T_{00})}{2} \nu&#039;

\nu &#039; = - \frac{dP(r)}{dr} \left( \frac{2}{T_{11} + T_{00}} \right) = \frac{1}{r} \left( \frac{8 \pi G T_{11} r^2 e^{\lambda}}{c^4} + e^{\lambda } - 1 \right)

Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = - \frac{\left( \left( e^{\lambda} - 1 \right) c^4 + e^{\lambda} 8 \pi G r^2 T_{11} \right) \left(T_{11} + T_{00} \right)}{2 c^4 r}

Metric identity:
e^{\lambda} = \left (1 - \frac{r_s}{r} \right)^{-1}

Metric identity:
\boxed{e^{\lambda} - 1 = \frac{r_s}{r - r_s}}

Equation of State for hydrostatic equilibrium:
\boxed{\frac{dP(r)}{dr} = -\frac{ \left(r_s c^4 + 8 \pi G r^3 T_{11} \right) \left( T_{11} + T_{00} \right)}{2 c^4 r \left(r - r_s \right)}}

Metric identity:
r (r - r_s) = r^2 \left( 1 - \frac{r_s}{r} \right)

Stress-energy tensor:
T_{00} = \rho(r) c^2 \; \; \; T_{11} = P(r)

Schwarzschild radius:
r_s = \frac{2 G M(r)}{c^2}

Equation of State for hydrostatic equilibrium:
\boxed{\frac{dP(r)}{dr} = -\frac{ \left( P(r) + \rho(r) c^2 \right) \left(r_s c^4 + 8 \pi G r^3 P(r) \right) \left( 1 - \frac{r_s}{r} \right)^{-1}}{2 c^4 r^2}}

Factoring out a c^2 from the first two numerator terms and a 2 G from one numerator term results in the TOV equation.

Tolman-Oppenheimer-Volkoff (TOV) equation:
\boxed{\frac{dP(r)}{dr} = - \frac{G}{r^2} \left[ \rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + 4 \pi r^3 \frac{P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation"
http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a87_195.pdf"
 
Last edited by a moderator:
a theoretical problem...


Derivation of the Equation of State for hydrostatic equilibrium...

Einstein field equation:
\frac{8 \pi G}{c^4} T_{11} = G_{11}

Schwarzschild-Einstein tensor:
\boxed{G_{11} = \frac{- r \nu&#039; + e^{\lambda} - 1}{r^2}}

Integration via substitution:
\frac{8 \pi G}{c^4} T_{11} = \frac{- r \nu&#039; + e^{\lambda} - 1}{r^2}

Differential Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = - \frac{(T_{11} + T_{00})}{2} \nu&#039;

\nu &#039; = - \frac{dP(r)}{dr} \left( \frac{2}{T_{11} + T_{00}} \right) = \frac{1}{r} \left( - \frac{8 \pi G T_{11} r^2}{c^4} + e^{\lambda} - 1 \right)

Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = -\frac{\left((e^{\lambda} - 1)c^4 - 8 \pi G r^2 T_{11} \right) \left( T_{11} + T_{00} \right)}{2 c^4 r}

Metric identity:
e^{\lambda} = \left (1 - \frac{r_s}{r} \right)^{-1}

Metric identity:
\boxed{e^{\lambda} - 1 = \frac{r_s}{r - r_s}}

Equation of State for hydrostatic equilibrium:
\boxed{\frac{dP(r)}{dr} = - \frac{\left(\frac{c^4 r_s}{r - r_s} - 8 \pi G r^2 T_{11} \right)\left(T_{11} + T_{00} \right)}{2 c^4 r}}

Stress-energy tensor:
T_{00} = \rho(r) c^2 \; \; \; T_{11} = P(r)

Schwarzschild radius:
r_s = \frac{2 G M(r)}{c^2}

Factoring out 2 G c^4 from the numerator results in the Equation of State for hydrostatic equilibrium equation.

Equation of State for hydrostatic equilibrium:
\boxed{\frac{dP(r)}{dr} = - \frac{G}{r} \left( P(r) + \rho(r) c^2 \right) \left( \frac{M(r)}{c^2 r - 2 G M(r)} - 4 \pi r^2 \frac{P(r)}{c^4} \right)}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation"
http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a87_195.pdf"
 
Last edited by a moderator:
correct equation?...


Another theoretical problem is all my scientific astrophysics papers downloaded from the internet are based upon the Equation of State of neutron star models, and are all based upon the Tolman-Oppenheimer-Volkoff (TOV) equation, which is based upon an incorrect Einstein tensor.

Tolman-Oppenheimer-Volkoff (TOV) equation:
\frac{dP(r)}{dr} = - \frac{G}{r^2} \left[ \rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + 4 \pi r^3 \frac{P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}

Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = - \frac{G}{r} \left( P(r) + \rho(r) c^2 \right) \left( \frac{M(r)}{c^2 r - 2 G M(r)} - 4 \pi r^2 \frac{P(r)}{c^4} \right)

Which equation is correct?
[/Color]
 
Last edited:


Orion1 said:
Another theoretical problem is all my scientific astrophysics papers downloaded from the internet are based upon the Equation of State of neutron star models, and are all based upon the Tolman-Oppenheimer-Volkoff (TOV) equation, which is based upon an incorrect Einstein tensor.

Tolman-Oppenheimer-Volkoff (TOV) equation:
\frac{dP(r)}{dr} = - \frac{G}{r^2} \left[ \rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + 4 \pi r^3 \frac{P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}

Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = - \frac{G}{r} \left( P(r) + \rho(r) c^2 \right) \left( \frac{M(r)}{c^2 r - 2 G M(r)} - 4 \pi r^2 \frac{P(r)}{c^4} \right)

Which equation is correct?
[/Color]

It behooves one to do take into account that since something carries the names of famous physicists must always be correct is based upon the strong defective idea of "following wind leads certainly one to get the position" kind of stuff! Of course the TOV equation is incorrect because its G11 consists of two e^{\lambda}-terms which as discussed earlier, is not true!

AB
 
Einstein Tensor package source code...

bcrowell said:
Are you sure this is an apples-apples comparison? E.g., in the ctensor package used with Maxima, which is what I'm familiar with, I believe it outputs G^i_j, not G_{ij}, and the order of indices on Christoffel symbols is also goofy. The order of indices on the Riemann tensor is not standardized at all in the literature.

I thought that both packages generated output as G^{Mathematica}_{ij} = G^{Maple}_{ij}.

I could not locate the source code for the Maple 'tensor' package.

I have posted the Mathematica 'Einstein Tensor' package source code at reference 1.
[/Color]
Reference:
https://www.physicsforums.com/showthread.php?p=2550925#post2550925"
 
Last edited by a moderator:
  • #10
bcrowell said:
Are you sure this is an apples-apples comparison? E.g., in the ctensor package used with Maxima, which is what I'm familiar with, I believe it outputs G^i_j, not G_{ij}, and the order of indices on Christoffel symbols is also goofy. The order of indices on the Riemann tensor is not standardized at all in the literature.

True! If we reckon that Mathematica gives G^i_j like that, a simple calculation would be able to verify this hypothesis:

G^1_1= g^{1i}G_{1i}=g^{11}G_{11} =-e^{-\lambda}\frac{ r{\nu}&#039; - e^{\lambda} + 1}{r^2}=\frac{e^{-\lambda} (-r{\nu}&#039;+ e^{\lambda} - 1)}{r^2}.

Remember that Mathematica appears to have made use of the Ricci tensor R_{ab}=R^c_{acb}. Since the Riemann tensor is antisymmetric in c and b, then a contraction of the form R_{ac}=R^b_{acb} would lead to the Ricci tensor used by Maple which has a different sign. To put another way, G^{Mathematica}_{ij} = - G^{Maple}_{ij}.

AB
 
Last edited:
  • #11
Mathematica Einstein tensor...


Mathematica Ricci tensor:
R_{ab} = R^c_{acb}

Maple Ricci tensor:
R_{ac} = R^b_{acb}

Package criteria:
R^{Mathematica} = -R^{Maple}

G^{Mathematica}_{ij} = - G^{Maple}_{ij}

The different signs are due to the use of different Ricci tensors.

Mathematica generated output:
G^1_1 = g^{1i}G_{1i}=g^{11}G_{11} = -e^{-\lambda}\frac{ r{\nu}&#039; - e^{\lambda} + 1}{r^2} = \frac{e^{-\lambda} (-r{\nu}&#039;+ e^{\lambda} - 1)}{r^2}

Maple generated output:
G_{11} = \frac{- r \nu&#039; + e^{\lambda} - 1}{r^2}
[/Color]
Reference:
https://www.physicsforums.com/showthread.php?p=2550925#post2550925"
 
Last edited by a moderator:
  • #12


Orion1 said:
G^1_1= g^{1i}G_{1i}=g^{11}G_{11} =-e^{-\lambda}\frac{ r{\nu}&#039; - e^{\lambda} + 1}{r^2}=\frac{e^{-\lambda} (-r{\nu}&#039;+ e^{\lambda} - 1)}{r^2}

G^{Mathematica}_{ij} = - G^{Maple}_{ij}

If this is true then the Mathematica G_{ij} has a correct mathematical output with an incorrect sign.

The solution should be:
G^1_1= g^{1i}G_{1i} = g^{11}G_{11} = - \frac{e^{- \lambda} (-r {\nu}&#039; + e^{\lambda} - 1)}{r^2}

G^{Mathematica}_{ij} = G^{Maple}_{ij}

Is this correct?
[/Color]
Reference:
https://www.physicsforums.com/showthread.php?p=2550925#post2550925"

No, it is not! From

g^{11}=-e^{- \lambda} and
G^{Mathematica}_{ij} = -G^{Maple}_{ij}=-\frac{- r{\nu}&#039;+ e^{\lambda} - 1}{r^2}=\frac{ r{\nu}&#039;- e^{\lambda} + 1}{r^2},

one would get

(G^1_1)^{Mathematica}=\frac{e^{-\lambda} (-r{\nu}&#039;+ e^{\lambda} - 1)}{r^2}

which shows exactly the same equation for Mathematica's G11 you wrote in your first post in this thread!

AB
 
Last edited by a moderator:
  • #13

G^1_1 = g^{1i}G_{1i} = g^{11} G^{Mathematica}_{11} = (- e^{- \lambda} ) \left( \frac{ r{\nu}&#039; - e^{\lambda} + 1}{r^2} \right) = \frac{e^{- \lambda} (- r \nu&#039; + e^{\lambda} - 1)}{r^2}

\boxed{G^1_1 = \frac{e^{- \lambda} (- r \nu&#039; + e^{\lambda} - 1)}{r^2}}

Is this the correct solution for G^1_1?

According to reference 1 equation series 8, the G^1_1 is:
G^1_1 = r^{-1} e^{- \lambda} \nu&#039; - r^{-2} e^{- \lambda} + r^{-2} = \frac{e^{- \lambda} r {\nu}&#039; - e^{- \lambda} + 1}{r^2} = \frac{e^{- \lambda} (r {\nu}&#039; + e^{\lambda} - 1)}{r^2}}

G^1_1 = \frac{e^{- \lambda} (r {\nu}&#039; + e^{\lambda} - 1)}{r^2}}
[/Color]
Reference:
http://www.bergshoeff.fmns.rug.nl/gr/form1.pdf"
 
Last edited by a moderator:
  • #14
Orion1 said:
Is this the correct solution for G^1_1?

G^1_1 = g^{1i}G_{1i} = g^{11} G^{Mathematica}_{11} = (- e^{- \lambda} ) \left( \frac{ r{\nu}&#039; - e^{\lambda} + 1}{r^2} \right) = \frac{e^{- \lambda} (- r \nu&#039; + e^{\lambda} - 1)}{r^2}

\boxed{G^1_1 = \frac{e^{- \lambda} (- r \nu&#039; + e^{\lambda} - 1)}{r^2}}

According to reference 1 equation series 8, the G^1_1 is:
G^1_1 = r^{-1} e^{- \lambda} \nu&#039; - r^{-2} e^{- \lambda} + r^{-2} = \frac{e^{- \lambda} r {\nu}&#039; - e^{- \lambda} + 1}{r^2} = \frac{e^{- \lambda} (r {\nu}&#039; + e^{\lambda} - 1)}{r^2}}

G^1_1 = \frac{e^{- \lambda} (r {\nu}&#039; + e^{\lambda} - 1)}{r^2}}
[/Color]
Reference:
http://www.bergshoeff.fmns.rug.nl/gr/form1.pdf"

Both are correct! As I said before, this unimportant difference comes from the definition of Ricci tensor. One uses R_{ab}=R^c_{acb} and other makes use of R_{ac}=R^b_{acb}. Remember that this affects R (the scalar curvature), too! So R^{Maple}=-R^{Mathematica}.

AB
 
Last edited by a moderator:
  • #15
Oppenheimer-Volkoff equation...


Schwarzschild metric:
c^{2} d\tau^{2} = e^{\nu} c^2 dt^{2} - e^{\lambda} dr^{2} - r^2 d\theta^{2} - r^2 \sin^2 \theta d\phi^2

Derivation of the Oppenheimer-Volkoff equation (O-V)...

Stress-energy tensor Schwarzschild field hydrostatic density: (ref. 1 - pg. 255 - eq. 10.20)
T_{00} = \rho(r) c^2 g_{00} = \rho(r) e^{\nu} c^4

Stress-energy tensor Schwarzschild field hydrostatic pressure: (ref. 1 - pg. 255 - eq. 10.21)
T_{11} = P(r) g_{11} = - P(r) e^{\lambda}

Where \rho(r) is the fluid density and P(r) is the fluid pressure.

Schwarzschild-Einstein tensor: (ref. 1 - pg. 255 - eq. 10.15)
G_{11} = \frac{- r \nu&#039; + e^{\lambda} - 1}{r^2}

Einstein field equation:
\frac{8 \pi G}{c^4} T_{11} = G_{11}

Integration via substitution:
- \frac{8 \pi G}{c^4} P(r) e^{\lambda} = \frac{- r \nu&#039; + e^{\lambda} - 1}{r^2}

Differential Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = - \left( \frac{T_{00} g^{00} + T_{11} g^{11}}{2} \right) \nu&#039; = - \left( \frac{\rho(r) c^2 + P(r)}{2} \right) \nu&#039;

\nu&#039; = - \frac{dP(r)}{dr} \left( \frac{2}{\rho(r) c^2 + P(r)} \right) = \frac{1}{r} \left( \frac{8 \pi G r^2 e^{\lambda} P(r)}{c^4} + e^{\lambda} - 1 \right)

Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = -\frac{ \left( \rho(r) c^2 + P(r) \right) \left((e^{\lambda} - 1)c^4 + 8 \pi G r^2 e^{\lambda} P(r) \right)}{2 c^4 r}

Metric identity:
e^{\lambda} = \left (1 - \frac{r_s}{r} \right)^{-1}

Metric identity:
e^{\lambda} - 1 = \frac{r_s}{r - r_s}

Equation of State for hydrostatic equilibrium:
\frac{dP(r)}{dr} = - \frac{ \left( \rho(r) c^2 + P(r) \right) \left(c^4 r_s + 8 \pi G r^3 P(r) \right)}{2 c^4 r \left(r - r_s \right)}

Schwarzschild radius:
r_s = \frac{2 G M(r)}{c^2}

Factoring out a 2 G c^2 from one numerator term results in the Oppenheimer-Volkoff equation.

Oppenheimer-Volkoff equation:
\frac{dP(r)}{dr} = - \frac{G \left( \rho(r) c^2 + P(r) \right) \left(M(r) + 4 \pi r^3 \frac{P(r)}{c^2} \right)}{r \left(c^2 r - 2 G M(r) \right)}

Oppenheimer-Volkoff equation (O-V): (ref. 1 - pg. 255 - eq. 10.21)
\frac{dP}{dr} = - \frac{( \rho + P)(m + 4 \pi r^3 P)}{r(r - 2m)}

Metric identity:
r (r - r_s) = r^2 \left( 1 - \frac{r_s}{r} \right)

Factoring out a c^2 from the numerator and integrating the metric identity via substitution results in the Tolman-Oppenheimer-Volkoff equation.

Tolman-Oppenheimer-Volkoff equation:
\frac{dP(r)}{dr} = - \frac{G}{r^2} \left( \rho(r) + \frac{P(r)}{c^2} \right) \left(M(r) + 4 \pi r^3 \frac{P(r)}{c^2} \right) \left( 1 - \frac{2 G M(r)}{c^2 r} \right)^{-1}

Tolman-Oppenheimer-Volkoff (TOV) equation: (ref. 2)
\frac{dP(r)}{dr} = - \frac{G}{r^2} \left[ \rho(r) + \frac{P(r)}{c^2} \right] \left[M(r) + 4 \pi r^3 \frac{P(r)}{c^2} \right] \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}

Are these equations correct?
[/Color]
Reference:
http://books.google.com/books?id=qhDFuWbLlgQC&lpg=PP1&dq=schutz&pg=PA255#v=onepage&q=&f=false"
http://en.wikipedia.org/wiki/Tolman%E2%80%93Oppenheimer%E2%80%93Volkoff_equation"
 
Last edited by a moderator:
  • #16
Last edited by a moderator:

Similar threads

Replies
2
Views
2K
Replies
11
Views
3K
Replies
1
Views
2K
Replies
14
Views
5K
Replies
2
Views
2K
Replies
3
Views
3K
Back
Top