Orion1
- 961
- 3
Schwarzschild metric:
c^{2} d\tau^{2} = e^{\nu(r)} dt^{2} - e^{\lambda(r)} dr^{2} - r^2 d\theta^{2} - r^2 \sin^2 \theta d\phi^2
According to reference 1, the Maple 13 'tensor' package generated this solution for the G_{11}[/tex] component:<br /> G_{11} = \frac{- r \nu&#039; + e^{\lambda} - 1}{r^2}<br /> <br /> According to reference 2, the Mathematica 6 'Einsteintensor' package generated this solution for the G_{11}[/tex] component:<br /> G_{11} = \frac{e^{-\lambda} (-r \nu&amp;#039; + e^{\lambda} - 1)}{r^2}<br /> <br /> According to reference 3 - eq. series 7, the solution for the G_{11}[/tex] component:&lt;br /&gt; G_{11} = \frac{\nu&amp;amp;#039;}{r} - \frac{e^{\lambda}}{r^2} + \frac{1}{r^2}&lt;br /&gt; &lt;br /&gt; According to reference 4 - eq. 4, the solution for the G_{11} component:&lt;br /&gt; G_{11} = \frac{e^{-\lambda} (r \nu&amp;amp;#039; - e^{\lambda} + 1)}{r^2}&lt;br /&gt; &lt;br /&gt; Which G_{11} component is the correct solution?&lt;br /&gt; [/Color]&lt;br /&gt; Reference:&lt;br /&gt; &lt;a href=&quot;https://www.physicsforums.com/showpost.php?p=2543074&amp;amp;postcount=1&amp;quot;&quot; class=&quot;link link--internal&quot;&gt;https://www.physicsforums.com/showpost.php?p=2543074&amp;amp;postcount=1&amp;quot;&lt;/a&gt;&lt;br /&gt; &lt;a href=&quot;https://www.physicsforums.com/showpost.php?p=2547561&amp;amp;postcount=2&amp;quot;&quot; class=&quot;link link--internal&quot;&gt;https://www.physicsforums.com/showpost.php?p=2547561&amp;amp;postcount=2&amp;quot;&lt;/a&gt;&lt;br /&gt; http://www.bergshoeff.fmns.rug.nl/gr/form1.pdf&amp;quot; &lt;br /&gt; http://www.new.dli.ernet.in/rawdataupload/upload/insa/INSA_2/20005a87_195.pdf&amp;quot;
Last edited by a moderator: