workmad3 said:
The acceleration is very important as previously stated. It is the acceleration that breaks the symmetry in the situation. Say you were accelerating away from someone else. To an observer, the relative motion is the same from either perspective, but from your perspective you can feel acceleration and from theirs, they can't feel acceleration. As acceleration is the only difference, it is the acceleration that introduces time-dilation effects (otherwise yes, the symmetry of the situations would mean that there was no way of telling which entity should undergo time dilation wrt the other)
Actually, the acceleration is useful as a convenient way to tell that you have shifted inertial frames.
It's not correct to say that acceleration "causes" time dilation. What causes time dilation, in special relativity, is the path through space time; ALL of it.
To see this, consider this thought experiment. You travel to another star. Along your journey, you accelerate four times. Once, up to 60% of the speed of light. Another time, up to 80% of the speed of light. Then again, to -60% of the speed of light (turn around). Then again, back to zero as you stop.
Does it make any difference WHEN you do these accelerations? Yes it does; and your eventual age at the end of the trip is calculated by integrating of proper time along the three intervals of constant velocity. The duration of each segment depends on when you do the accelerations. The calculation never even considers acceleration; it's enough to know the distances and velocities of the segments between accelerations.
Acceleration is one way to tell you are not inertial.
There are other ways to tell. Suppose you use a laser range finder, to keep track of how far away the other twin is. You send a message by laser to the other twin, containing your local time. The message is reflected, and when it gets back, you can tell how long the round trip of the laser light took. That let's you calculate how far away the twin WAS at the time of the reflection. Some time I may write all this up, but using laser range finding shows up clearly the asymmetry of the two twins, and the effects of a change in frame.
For the traveling twin... the one who exists in two different inertial frames, the data from their laser range finder will indicate that the stay-at-home twin is actually motionless, but blueshifted as if at the top of a large gravitational field, for most of the duration of the trip!
Such observations are sufficient to infer the change in inertial frame, even if you slept through the short acceleration at turn around without noticing. The ship-bound twin can also notice a sudden change in the apparent size of the stay-at-home twin. They suddenly shrink in size in the sky, at the time they go to blueshifted, as if suddenly transported far far away. But the laser range finder disagrees, and indicates that they merely stopped.
None of these things are seen by the stay-at-home twin.
The key, in all of this, is not acceleration per se, but being in a different inertial frame.
Cheers -- sylas