Analysis Master Complex Analysis with Serge Lang: Prerequisites & Techniques for Grads

Click For Summary
Serge Lang's "Complex Analysis" is a graduate-level text that requires a basic understanding of analysis. The book covers fundamental concepts such as complex numbers, functions, and differentiability, including the Cauchy-Riemann equations and holomorphic functions. It delves into power series, analytic functions, and Cauchy's theorem, providing a thorough exploration of integrals, residues, and singularities. The text also addresses conformal mappings, harmonic functions, and various analytic topics, including the Riemann mapping theorem and properties of entire and meromorphic functions. While the book is praised for its depth and rigor, some readers find it challenging for undergraduate study, suggesting that alternative texts may be more suitable for beginners.

For those who have used this book

  • Strongly Recommend

    Votes: 0 0.0%
  • Lightly Recommend

    Votes: 0 0.0%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    0
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Foreword
[*] Prerequisites
[*] Basic Theory
[LIST]
[*] Complex Numbers and Functions
[LIST]
[*] Definition
[*] Polar Form
[*] Complex Valued Functions
[*] Limits and Compact Sets
[LIST]
[*] Compact Sets
[/LIST]
[*] Complex Differentiability
[*] The Cauchy-Riemann Equations
[*] Angles Under Holomorphic Maps
[/LIST]
[*] Power Series
[LIST]
[*] Formal Power Series
[*] Convergent Power Series
[*] Relations Between Formal and Convergent Series
[LIST]
[*] Sums and Products
[*] Quotients
[*] Composition of Series
[/LIST]
[*] Analytic Functions
[*] Differentiation of Power Series
[*] The Inverse and Open Mapping Theorems
[*] The Local Maximum Modulus Principle
[/LIST]
[*] Cauchy's Theorem, First Part
[LIST]
[*] Holomorphic Functions on Connected Sets
[LIST]
[*] Appendix: Connectedness
[/LIST]
[*] Integrals Over Paths
[*] Local Primitive for a Holomorphic Function
[*] Another Description of the Integral Along a Path
[*] The Homotopy Form of Cauchy's Theorem
[*] Existence of Global Primitives. Definition of the Logarithm
[*] The Local Cauchy Formula
[/LIST]
[*] Winding Numbers and Cauchy's Theorem
[LIST]
[*] The Winding Number
[*] The Global Cauchy Theorem
[LIST]
[*] Dixon's Proof of Theorem 2.5 (Cauchy's Formula)
[/LIST]
[*] Artin's Proof
[/LIST]
[*] Applications of Cauchy's Integral Formula
[LIST]
[*] Uniform Limits of Analytic Functions
[*] Laurent Series
[*] Isolated Singularities
[LIST]
[*] Removable Singularities
[*] Poles
[*] Essential Singularities
[/LIST]
[/LIST]
[*] Calculus of Residues
[LIST]
[*] The Residue Formula
[LIST]
[*] Residues of Differentials
[/LIST]
[*] Evaluation of Definite Integrals
[LIST]
[*] Fourier Transforms
[*] Trigonometric Integrals
[*] Mellin Transforms
[/LIST]
[/LIST]
[*] Conformal Mappings
[LIST]
[*] Schwarz Lemma
[*] Analytic Automorphisms of the Disc
[*] The Upper Half Plane
[*] Other Examples
[*] Fractional Linear Transformations
[/LIST]
[*] Harmonic Functions
[LIST]
[*] Definition 
[LIST]
[*] Application: Perpendicularity
[*] Application: Flow Lines
[/LIST]
[*] Examples
[*] Basic Properties of Harmonic Functions
[*] The Poisson Formula
[LIST]
[*] 
The Poisson Integral as a Convolution
[/LIST]
[*] Construction of Harmonic Functions
[*] Appendix. Differentiating Under the Integral Sign
[/LIST]
[/LIST]
[*] Geometric Function Theory
[LIST]
[*] Schwarz Reflection
[LIST]
[*] Schwarz Reflection (by Complex Conjugation)
[*] Reflection Across Analytic Arcs
[*] Application of Schwarz Reflection
[/LIST]
[*] The Riemann Mapping Theorem
[LIST]
[*] Statement of the Theorem
[*] Compact Sets in Function Spaces
[*] Proof of the Riemann Mapping Theorem
[*] Behavior at the Boundary
[/LIST]
[*] Analytic Continuation Along Curves
[LIST]
[*] Continuation Along a Curve
[*] The Dilogarithm
[*] Application to Picard's Theorem
[/LIST]
[/LIST]
[*] Various Analytic Topics
[LIST]
[*] Applications of the Maximum Modulus Principle and Jensen's Formula
[LIST]
[*] Jensen's Formula
[*] The Picard-Borel Theorem
[*] Bounds by the Real Part, Borel-Caratheodory Theorem
[*] The Use of Three Circles and the Effect of Small Derivatives
[LIST]
[*] Hermite Interpolation Formula
[/LIST]
[*] Entire Functions with Rational Values
[*] The Phragmen-Lindelof and Hadamard Theorems
[/LIST]
[*] Entire and Meromorphic Functions
[LIST]
[*] Infinite Products
[*] Weierstrass Products
[*] Functions of Finite Order
[*] Meromorphic Functions, Mittag-Leffler Theorem
[/LIST]
[*] Elliptic Functions
[LIST]
[*] The Liouville Theorems
[*] The Weierstrass Function
[*] The Addition Theorem
[*] The Sigma and Zeta Functions
[/LIST]
[*] The Gamma and Zeta Functions
[LIST]
[*] The Differentiation Lemma
[*] The Gamma Function
[LIST]
[*] Weierstrass Product
[*] The Gauss Multiplication Formula (Distribution Relation)
[*] The (Other) Gauss Formula
[*] The Mellin Transform
[*] The Stirling Formula
[*] Proof of Stirling's Formula
[/LIST]
[*] The Lerch Formula
[*] Zeta Functions
[/LIST]
[*] The Prime Number Theorem
[LIST]
[*] Basic Analytic Properties of the Zeta Function
[*] The Main Lemma and its Application
[*] Proof of the Main Lemma
[/LIST]
[/LIST]
[*] Appendix
[LIST]
[*] Summation by Parts and Non-Absolute Convergence
[*] Difference Equations
[*] Analytic Differential Equations
[*] Fixed Points of a Fractional Linear Transformation
[*] Cauchy's Formula for C^\infty Functions
[*] Cauchy's Theorem for Locally Integrable Vector Fields
[*] More on Cauchy-Riemann
[/LIST]
[*] Bibliography
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org


i love this book, but it was mostly too hard for my undergraduate class. it begins with a discussion pif formal and convergent powers dries, as does the book of cartan, which may be more accessible, and has excellent chapters near the end on isomorphisms of the complex plane and extended plane. highly recommended but may not be a good first book. for that i prefer the out of print book of frederick green leaf.
 
Many years ago, as the internet was coming of age, I burned over 500 pounds of technical manuals. I realized I can look things up on the internet faster than I can find something in a technical manual. And just about anything I might need could be found online. But letting go of my several shelves worth of college text and other science books is another matter. I can't bring myself to get rid of them but there is very little if anything I can't find online now. Books are heavy and a pain...

Similar threads

  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
5K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
5K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
4K
  • Poll Poll
  • · Replies 5 ·
Replies
5
Views
9K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
6K
  • Poll Poll
  • · Replies 4 ·
Replies
4
Views
7K
  • Poll Poll
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 18 ·
Replies
18
Views
4K
  • Poll Poll
  • · Replies 1 ·
Replies
1
Views
6K
  • Poll Poll
  • · Replies 2 ·
Replies
2
Views
7K