Analysis Master Complex Analysis with Serge Lang: Prerequisites & Techniques for Grads

AI Thread Summary
Serge Lang's "Complex Analysis" is a graduate-level text that requires a basic understanding of analysis. The book covers fundamental concepts such as complex numbers, functions, and differentiability, including the Cauchy-Riemann equations and holomorphic functions. It delves into power series, analytic functions, and Cauchy's theorem, providing a thorough exploration of integrals, residues, and singularities. The text also addresses conformal mappings, harmonic functions, and various analytic topics, including the Riemann mapping theorem and properties of entire and meromorphic functions. While the book is praised for its depth and rigor, some readers find it challenging for undergraduate study, suggesting that alternative texts may be more suitable for beginners.

For those who have used this book

  • Strongly Recommend

    Votes: 0 0.0%
  • Lightly Recommend

    Votes: 0 0.0%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    0
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Foreword
[*] Prerequisites
[*] Basic Theory
[LIST]
[*] Complex Numbers and Functions
[LIST]
[*] Definition
[*] Polar Form
[*] Complex Valued Functions
[*] Limits and Compact Sets
[LIST]
[*] Compact Sets
[/LIST]
[*] Complex Differentiability
[*] The Cauchy-Riemann Equations
[*] Angles Under Holomorphic Maps
[/LIST]
[*] Power Series
[LIST]
[*] Formal Power Series
[*] Convergent Power Series
[*] Relations Between Formal and Convergent Series
[LIST]
[*] Sums and Products
[*] Quotients
[*] Composition of Series
[/LIST]
[*] Analytic Functions
[*] Differentiation of Power Series
[*] The Inverse and Open Mapping Theorems
[*] The Local Maximum Modulus Principle
[/LIST]
[*] Cauchy's Theorem, First Part
[LIST]
[*] Holomorphic Functions on Connected Sets
[LIST]
[*] Appendix: Connectedness
[/LIST]
[*] Integrals Over Paths
[*] Local Primitive for a Holomorphic Function
[*] Another Description of the Integral Along a Path
[*] The Homotopy Form of Cauchy's Theorem
[*] Existence of Global Primitives. Definition of the Logarithm
[*] The Local Cauchy Formula
[/LIST]
[*] Winding Numbers and Cauchy's Theorem
[LIST]
[*] The Winding Number
[*] The Global Cauchy Theorem
[LIST]
[*] Dixon's Proof of Theorem 2.5 (Cauchy's Formula)
[/LIST]
[*] Artin's Proof
[/LIST]
[*] Applications of Cauchy's Integral Formula
[LIST]
[*] Uniform Limits of Analytic Functions
[*] Laurent Series
[*] Isolated Singularities
[LIST]
[*] Removable Singularities
[*] Poles
[*] Essential Singularities
[/LIST]
[/LIST]
[*] Calculus of Residues
[LIST]
[*] The Residue Formula
[LIST]
[*] Residues of Differentials
[/LIST]
[*] Evaluation of Definite Integrals
[LIST]
[*] Fourier Transforms
[*] Trigonometric Integrals
[*] Mellin Transforms
[/LIST]
[/LIST]
[*] Conformal Mappings
[LIST]
[*] Schwarz Lemma
[*] Analytic Automorphisms of the Disc
[*] The Upper Half Plane
[*] Other Examples
[*] Fractional Linear Transformations
[/LIST]
[*] Harmonic Functions
[LIST]
[*] Definition 
[LIST]
[*] Application: Perpendicularity
[*] Application: Flow Lines
[/LIST]
[*] Examples
[*] Basic Properties of Harmonic Functions
[*] The Poisson Formula
[LIST]
[*] 
The Poisson Integral as a Convolution
[/LIST]
[*] Construction of Harmonic Functions
[*] Appendix. Differentiating Under the Integral Sign
[/LIST]
[/LIST]
[*] Geometric Function Theory
[LIST]
[*] Schwarz Reflection
[LIST]
[*] Schwarz Reflection (by Complex Conjugation)
[*] Reflection Across Analytic Arcs
[*] Application of Schwarz Reflection
[/LIST]
[*] The Riemann Mapping Theorem
[LIST]
[*] Statement of the Theorem
[*] Compact Sets in Function Spaces
[*] Proof of the Riemann Mapping Theorem
[*] Behavior at the Boundary
[/LIST]
[*] Analytic Continuation Along Curves
[LIST]
[*] Continuation Along a Curve
[*] The Dilogarithm
[*] Application to Picard's Theorem
[/LIST]
[/LIST]
[*] Various Analytic Topics
[LIST]
[*] Applications of the Maximum Modulus Principle and Jensen's Formula
[LIST]
[*] Jensen's Formula
[*] The Picard-Borel Theorem
[*] Bounds by the Real Part, Borel-Caratheodory Theorem
[*] The Use of Three Circles and the Effect of Small Derivatives
[LIST]
[*] Hermite Interpolation Formula
[/LIST]
[*] Entire Functions with Rational Values
[*] The Phragmen-Lindelof and Hadamard Theorems
[/LIST]
[*] Entire and Meromorphic Functions
[LIST]
[*] Infinite Products
[*] Weierstrass Products
[*] Functions of Finite Order
[*] Meromorphic Functions, Mittag-Leffler Theorem
[/LIST]
[*] Elliptic Functions
[LIST]
[*] The Liouville Theorems
[*] The Weierstrass Function
[*] The Addition Theorem
[*] The Sigma and Zeta Functions
[/LIST]
[*] The Gamma and Zeta Functions
[LIST]
[*] The Differentiation Lemma
[*] The Gamma Function
[LIST]
[*] Weierstrass Product
[*] The Gauss Multiplication Formula (Distribution Relation)
[*] The (Other) Gauss Formula
[*] The Mellin Transform
[*] The Stirling Formula
[*] Proof of Stirling's Formula
[/LIST]
[*] The Lerch Formula
[*] Zeta Functions
[/LIST]
[*] The Prime Number Theorem
[LIST]
[*] Basic Analytic Properties of the Zeta Function
[*] The Main Lemma and its Application
[*] Proof of the Main Lemma
[/LIST]
[/LIST]
[*] Appendix
[LIST]
[*] Summation by Parts and Non-Absolute Convergence
[*] Difference Equations
[*] Analytic Differential Equations
[*] Fixed Points of a Fractional Linear Transformation
[*] Cauchy's Formula for C^\infty Functions
[*] Cauchy's Theorem for Locally Integrable Vector Fields
[*] More on Cauchy-Riemann
[/LIST]
[*] Bibliography
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org


i love this book, but it was mostly too hard for my undergraduate class. it begins with a discussion pif formal and convergent powers dries, as does the book of cartan, which may be more accessible, and has excellent chapters near the end on isomorphisms of the complex plane and extended plane. highly recommended but may not be a good first book. for that i prefer the out of print book of frederick green leaf.
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!

Similar threads

  • Poll Poll
Replies
1
Views
5K
Replies
1
Views
5K
Replies
5
Views
9K
Replies
1
Views
6K
  • Poll Poll
Replies
4
Views
7K
  • Poll Poll
Replies
3
Views
6K
Replies
18
Views
3K
  • Poll Poll
Replies
1
Views
6K
Replies
2
Views
7K
Back
Top