Analysis Functional Analysis by Stein and Shakarchi

AI Thread Summary
The discussion centers on the book "Functional Analysis: Introduction to Further Topics in Analysis" by Elias Stein and Rami Shakarchi, emphasizing its prerequisites and suitability for different academic backgrounds. It is noted that the book requires a solid foundation in analysis, specifically measure theory, as it was designed for graduate-level courses at Princeton. The initial chapters assume familiarity with measure spaces and sigma-algebras, making it less suitable for physics majors without a strong analysis background. Recommendations for alternative texts, such as "Applied Functional Analysis" by D.H. Griffel and "Introduction to Topology and Modern Analysis" by George F. Simmons, are provided for those seeking a more accessible introduction to functional analysis.

For those who have used this book

  • Strongly Recommend

    Votes: 2 66.7%
  • Lightly Recommend

    Votes: 1 33.3%
  • Lightly don't Recommend

    Votes: 0 0.0%
  • Strongly don't Recommend

    Votes: 0 0.0%

  • Total voters
    3
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Foreword
[*] Introduction
[*] L^p Spaces and Banach Spaces
[LIST]
[*] L^p spaces
[LIST]
[*] The Hölder and Minkowski inequalities
[*] Completeness of Lp
[*] Further remarks
[/LIST]
[*] The case p = ∞
[*] Banach spaces
[LIST]
[*] Examples
[*] Linear functionals and the dual of a Banach space
[/LIST]
[*] The dual space of L^p when 1 ≤ p < ∞
[*] More about linear functionals
[LIST]  
[*] Separation of convex sets 
[*] The Hahn-Banach Theorem
[*] Some consequences
[*] The problem of measure
[/LIST]
[*] Complex L^p and Banach spaces
[*] Appendix: The dual of C(X)
[LIST]
[*] The case of positive linear functionals
[*] The main result
[*] An extension
[/LIST]
[*] Exercises
[*] Problems
[/LIST]
[*] L^p Spaces in Harmonic Analysis
[LIST]
[*] Early Motivations
[*] The Riesz interpolation theorem
[LIST]
[*] Some examples
[/LIST]
[*] The L^p theory of the Hilbert transform
[LIST]
[*] The L^2 formalism
[*] The L^p theorem
[*] Proof of Theorem 3.2
[/LIST]
[*] The maximal function and weak-type estimates
[LIST]
[*] The L^p inequality
[/LIST]
[*] The Hardy space H_r^1
[LIST]
[*] Atomic decomposition of H_r^1
[*] An alternative definition of H_r^1
[*] Applications to the Hilbert transform
[/LIST]
[*] The space H_r^1 and maximal functions
[LIST]
[*] The space BMO
[/LIST]
[*] Exercises
[*] Problems
[/LIST]
[*] Distributions: Generalized Functions
[LIST]
[*] Elementary properties
[LIST]
[*] Definitions
[*] Operations on distributions
[*] Supports of distributions
[*] Tempered distributions
[*] Fourier transform
[*] Distributions with point supports
[/LIST]
[*] Important examples of distributions
[LIST]
[*] The Hilbert transform and pv(1/x)
[*] Homogeneous distributions
[*] Fundamental solutions
[*] Fundamental solution to general partial differential equations with constant coefficients
[*] Parametrices and regularity for elliptic equations
[/LIST]
[*] Calderon-Zygmond distributions and L^p estimates
[LIST]
[*] Defining properties
[*] The L^p theory
[/LIST]
[*] Exercises
[*] Problems
[/LIST]
[*] Applications of the Baire Category Theorem
[LIST]
[*] The Baire category theorem
[LIST]
[*] Continuity of the limit of a sequence of continuous functions
[*] Continuous functions that are nowhere differentiable
[/LIST]
[*] The uniform boundedness principle
[LIST]
[*] Divergence of Fourier series
[/LIST]
[*] The open mapping theorem
[LIST]
[*] Decay of Fourier coefficients of L^1-functions
[/LIST]
[*] The closed graph theorem
[LIST]
[*] Grothendieck's theorem on closed subspaces of L^p
[/LIST]
[*] Besicovitch sets
[*] Exercises
[*] Problems
[/LIST]
[*] Rudiments of Probability Theory
[LIST]
[*] Bernouilli trials
[LIST]
[*] Coin flips
[*] The case N=\infty
[*] Behavior of S_N as N\rightarrow \infty, first results
[*] Central limit theorem
[*] Statement and proof of the theorem
[*] Random series
[*] Random Fourier series
[*] Bernouilli trials
[/LIST]
[*] Sums of independent random variables
[LIST]
[*] Law of large numbers and ergodic theorem
[*] The role of martingales
[*] The zero-one law
[*] The central limit theorem
[*] Random variables with values in R^d
[*] Random walks
[/LIST]
[*] Exercises
[*] Problems
[/LIST]
[*] An Introduction to Brownian Motion
[LIST]
[*] The Framework
[*] Technical Preliminaries
[*] Construction of Brownian motion
[*] Some further properties of Brownian motion
[*] Stopping times and the strong Markov property
[LIST]
[*] Stopping times and the Blumenthal zero-one law
[*] The strong Markov property
[*] Other forms of the strong Markov Property
[/LIST]
[*] Solutions of the Dirichlet problem
[*] Exercises
[*] Problems
[/LIST]
[*] A Glimpse into Several Complex Variables
[LIST]
[*] Elementary properties
[*] Hartog's phenomenon: an example
[*] Hartog's theorem: the inhomogeneous Cauchy-Riemann equations
[*] A boundary version: the tangential Cauchy-Riemann equations
[*] The Levi form
[*] A maximum principle
[*] Approximation and extension theorems
[*] Appendix: The upper half-space
[LIST]
[*] Hardy space
[*] Cauchy integral
[*] Non-solvability
[/LIST]
[*] Exercises
[*] Problems
[/LIST]
[*] Oscillatory Integrals in Fourier Analysis
[LIST]
[*] An illustration
[*] Oscillatory integrals
[*] Fourier transform of surface-carried measures
[*] Return to the averaging operator
[*] Restriction theorems
[LIST]
[*] Radial functions
[*] The problem
[*] The theorem
[/LIST]
[*] Application to some dispersion equations
[LIST]
[*] The Schrodinger equation
[*] Another dispersion equation
[*] The non-homogeneous Schrodinger equation
[*] A critical non-linear dispersion equation
[/LIST]
[*] A look back at the Radon transform
[LIST]
[*] A variant of the Radon transform
[*] Rotational curvature
[*] Oscillatory integrals
[*] Dyadic decomposition
[*] Almost-orthogonal sums
[*] Proof of Theorem 7.1
[/LIST]
[*] Counting lattice points
[LIST]
[*] Averages of arithmetic functions
[*] Poisson summation formula
[*] Hyperbolic measure
[*] Fourier transforms
[*] A summation formula
[/LIST]
[*] Exercises
[*] Problems
[/LIST]
[*] Notes and References
[*] Bibliography
[*] Symbol Glossary
[*] Index
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
Is this book suitable to physics majors with calculus, linear algebra, differential equations background? I'm "familiar" with basic analysis i.e Abbott, but I don't do analysis every time since I'm a physics major.
 
Figaro said:
Is this book suitable to physics majors with calculus, linear algebra, differential equations background? I'm "familiar" with basic analysis i.e Abbott, but I don't do analysis every time since I'm a physics major.

No. It assumes a background in analysis including measure theory. It was originally taught as the fourth in a series of graduate level analysis courses at Princeton. The first three were somewhat independent of each other and had similar prerequisites, but this one does require material from the others or from a similar source.

This first chapter assumes the reader is familiar with measure spaces, sigma-algebras, etc.

If you want a book on basic functional analysis at the level you're asking, I recommend Applied Functional Analysis by D.H. Griffel.
 
The Bill said:
No. It assumes a background in analysis including measure theory. It was originally taught as the fourth in a series of graduate level analysis courses at Princeton. The first three were somewhat independent of each other and had similar prerequisites, but this one does require material from the others or from a similar source.

This first chapter assumes the reader is familiar with measure spaces, sigma-algebras, etc.

If you want a book on basic functional analysis at the level you're asking, I recommend Applied Functional Analysis by D.H. Griffel.
Thanks for your opinion, I've looked into Introduction to Topology and Modern Analysis by George F. Simmons, and it has chapters on basic functional analysis, as well as of course topology. What do you think about it?
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...

Similar threads

  • Poll Poll
Replies
4
Views
7K
  • Poll Poll
Replies
1
Views
5K
  • Poll Poll
Replies
1
Views
6K
Replies
1
Views
4K
Replies
1
Views
5K
Replies
22
Views
16K
Replies
2
Views
8K
Replies
1
Views
4K
Replies
1
Views
6K
Back
Top