Analysis Complex Variables and Applications by Brown and Churchill

AI Thread Summary
"Complex Variables and Applications" by Brown and Churchill is a well-structured introductory textbook that effectively serves physics and engineering students. It covers essential topics such as residues, conformal mappings, and analytic functions, providing clear explanations and organized content. While it is rigorous enough for math majors, it may lack deeper insights into the beauty of complex analysis. Users recommend it as a primary text for introductory courses, but suggest supplementary materials like "Visual Complex Analysis" for a broader understanding. Overall, it is praised for its clarity, minimal errors, and suitability for self-study.

For those who have used this book


  • Total voters
    8
micromass
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
22,169
Reaction score
3,327

Table of Contents:
Code:
[LIST]
[*] Preface 
[*] Complex Numbers
[LIST]
[*] Sums and Products
[*] Basic Algebraic Properties
[*] Further Properties
[*] Vectors and Moduli
[*] Complex Conjugates
[*] Exponential Form
[*] Products and Powers in Exponential Form
[*] Arguments of Products and Quotients
[*] Roots of Complex Numbers
[*] Examples
[*] Regions in the Complex Plane
[/LIST]
[*] Analytic Functions 
[LIST]
[*] Functions of a Complex Variable
[*] Mappings
[*] Mappings by the Exponential Function
[*] Limits
[*] Theorems on Limits
[*] Limits Involving the Point at Infinity
[*] Continuity
[*] Derivatives
[*] Differentiation Formulas
[*] Cauchy-Riemann Equations
[*] Sufficient Conditions for Differentiability 
[*] Polar Coordinates
[*] Analytic Functions
[*] Examples
[*] Harmonic Functions
[*] Uniquely Determined Analytic Functions
[*] Reflection Principle
[/LIST]
[*] Elementary Functions
[LIST]
[*] The Exponential Function
[*] The Logarithmic Function
[*] Branches and Derivatives of Logarithms
[*] Some Identities Involving Logarithms
[*] Complex Exponents
[*] Trigonometric Functions
[*] Hyperbolic Functions
[*] Inverse Trigonometric and Hyperbolic Functions
[/LIST]
[*] Integrals
[LIST]
[*] Derivatives of Functions w(t)
[*] Definite Integrals of Functions w(t)
[*] Contours
[*] Contour Integrals
[*] Some Examples
[*] Examples with Branch Cuts
[*] Upper Bounds for Moduli of Contour Integrals 
[*] Antiderivatives
[*] Proof of the Theorem
[*] Cauchy-Goursat Theorem
[*] Proof of the Theorem
[*] Simply Connected Domains
[*] Multiply Connected Domains
[*] Cauchy Integral Formula
[*] An Extension of the Cauchy Integral Formula
[*] Some Consequences of the Extension
[*] Liouville's Theorem and the Fundamental Theorem of Algebra
[*] Maximum Modulus Principle
[/LIST]
[*] Series
[LIST]
[*] Convergence of Sequences
[*] Convergence of Series
[*] Taylor Series
[*] Proof of Taylor's Theorem
[*] Examples
[*] Laurent Series
[*] Proof of Laurent's Theorem
[*] Examples
[*] Absolute and Uniform Convergence of Power Series
[*] Continuity of Sums of Power Series
[*] Integration and Differentiation of Power Series
[*] Uniqueness of Series Representations
[*] Multiplication and Division of Power Series
[/LIST]
[*] Residues and Poles
[LIST]
[*] Isolated Singular Points
[*] Residues
[*] Cauchy's Residue Theorem
[*] Residue at Infinity
[*] The Three Types of Isolated Singular Points
[*] Residues at Poles
[*] Examples
[*] Zeros of Analytic Functions
[*] Zeros and Poles
[*] Behavior of Functions Near Isolated Singular Points
[/LIST]
[*] Applications of Residues
[LIST]
[*] Evaluation of Improper Integrals
[*] Example
[*] Improper Integrals from Fourier Analysis
[*] Jordan's Lemma
[*] Indented Paths
[*] An Indentation Around a Branch Point
[*] Integration Along a Branch Cut
[*] Definite Integrals Involving Sines and Cosines
[*] Argument Principle
[*] Rouché's Theorem
[*] Inverse Laplace Transforms
[*] Examples
[/LIST]
[*] Mapping by Elementary Functions
[LIST]
[*] Linear Transformations
[*] The Transformation w = 1/z
[*] Mappings by 1/z
[*] Linear Fractional Transformations
[*] An Implicit Form
[*] Mappings of the Upper Half Plane
[*] The Transformation w = sin z 
[*] Mappings by z^2 and Branches of z^{1/2}
[*] Square Roots of Polynomials
[*] Riemann Surfaces
[*] Surfaces for Related Functions
[/LIST]
[*] Conformal Mapping
[LIST]
[*] Preservation of Angles
[*] Scale Factors
[*] Local Inverses
[*] Harmonic Conjugates
[*] Transformations of Harmonic Functions
[*] Transformations of Boundary Conditions
[/LIST]
[*] Applications of Conformal Mapping
[LIST]
[*] Steady Temperatures
[*] Steady Temperatures in a Half Plane
[*] A Related Problem
[*] Temperatures in a Quadrant
[*] Electrostatic Potential
[*] Potential in a Cylindrical Space
[*] Two-Dimensional Fluid Flow
[*] The Stream Function
[*] Flows Around a Corner and Around a Cylinder
[/LIST]
[*] The Schwarz--Christoffel Transformation
[LIST]
[*] Mapping the Real Axis Onto a Polygon
[*] Schwarz--Christoffel Transformation
[*] Triangles and Rectangles
[*] Degenerate Polygons
[*] Fluid Flow in a Channel Through a Slit
[*] Flow in a Channel With an Offset
[*] Electrostatic Potential About an Edge of a Conducting Plate
[/LIST]
[*] Integral Formulas of the Poisson Type
[LIST]
[*] Poisson Integral Formula
[*] Dirichlet Problem for a Disk
[*] Related Boundary Value Problems
[*] Schwarz Integral Formula
[*] Dirichlet Problem for a Half Plane
[*] Neumann Problems
[/LIST]
[*] Appendixes
[LIST]
[*] Bibliography
[*] Table of Transformations of Regions
[/LIST]
[*] Index 
[/LIST]
 
Last edited by a moderator:
Physics news on Phys.org
Solid user-friendly intro book on complex variables, sort of a rough equivalent to linear algebra done right.
 
I'd highly recommend for a physics or chemistry student who wants a better grasp of residues and conformal mappings, but which is not too mathematically intense.
 
This is a decent introductory book, geared well toward physicists and engineers but rigorous enough to not offend a math-major. It is clearly written and organized, making it decent as a reference book.

However, it doesn't give much insight into the beauty of the subject. This is a common required textbook for intro courses, so I recommend also getting Visual Complex Analysis as an interesting supplementary text.

There is also a solid free textbook here:
http://www.math.uiuc.edu/~r-ash/CV.html

I am familliar with the author's abstract algebra book (which I like), but I have only skimmed parts of this one.
 
I am familiar with the 5th edition, which I have had for about 20 years. I think it is a reasonable book that covers most of the material many engineers/physicists need for routine applications. By far my favorite sections are those on conformal mapping - the presentation is quite good for applications. In most ways Churchill and Brown is better than the book I had to buy for my complex analysis class (introduction to complex analysis, by Priestley), but I am not wild about the organization of most of the book. Overall I prefer the book by Saff and Snider for an introduction.
 
I studied the first ten chapters of this book (omitting the final chapters on applications). I used the seventh edition (the eighth edition is now the most current one). I found this text to be ideal for someone (such as myself) who had studied complex analysis a long time ago and wanted to relearn it. The text is almost entirely free of typos and errors, which I find to be important for self-study. The proofs are clear and the examples well-chosen. The exercises are primarily calculations, with a few simple proofs thrown in. This is not a criticism; I found some of the calculations to be challenging. Someone who wants to study more advanced topics in Complex Analysis should consult a second book, such as Lang, Ahlfors or Conway (after studying this text).
 
For the following four books, has anyone used them in a course or for self study? Compiler Construction Principles and Practice 1st Edition by Kenneth C Louden Programming Languages Principles and Practices 3rd Edition by Kenneth C Louden, and Kenneth A Lambert Programming Languages 2nd Edition by Allen B Tucker, Robert E Noonan Concepts of Programming Languages 9th Edition by Robert W Sebesta If yes to either, can you share your opinions about your personal experience using them. I...
Hi, I have notice that Ashcroft, Mermin and Wei worked at a revised edition of the original solid state physics book (here). The book, however, seems to be never available. I have also read that the reason is related to some disputes related to copyright. Do you have any further information about it? Did you have the opportunity to get your hands on this revised edition? I am really curious about it, also considering that I am planning to buy the book in the near future... Thanks!
I’ve heard that in some countries (for example, Argentina), the curriculum is structured differently from the typical American program. In the U.S., students usually take a general physics course first, then move on to a textbook like Griffiths, and only encounter Jackson at the graduate level. In contrast, in those countries students go through a general physics course (such as Resnick-Halliday) and then proceed directly to Jackson. If the slower, more gradual approach is considered...

Similar threads

Replies
1
Views
6K
Replies
1
Views
5K
  • Poll Poll
Replies
3
Views
6K
  • Poll Poll
Replies
1
Views
5K
Replies
18
Views
3K
  • Poll Poll
Replies
4
Views
7K
Replies
15
Views
16K
Replies
2
Views
2K
Back
Top