Abigale
- 53
- 0
Hey,
I consider a diagonalized Hamiltonian:
H=\sum\limits_{k} \underbrace{ (\epsilon_{k} u_{k}^2 -\epsilon_{k} v_{k}^2 -2\Delta u_{k} v_{k} )}_{E_{k}}(d_{k \uparrow}^{\dagger}d_{k \uparrow} + d_{k \downarrow}^{\dagger}d_{k \downarrow}) +const
with fermionic creation and annihilation operators.
From solution I know that: E_{k} =\sqrt{\Delta^2 +\epsilon_{k}^2} but how can I get this result?
Things I even know is that: u_k^2 + v_k^2 =1 and:
\sum\limits_k <br /> <br /> \underbrace{(<br /> -2\epsilon_k u_k v_k +\Delta v_k^2 -\Delta u_k ^2<br /> )}_{\stackrel{!}{=}0}<br /> <br /> (d_{k \uparrow}^{\dagger}d_{k \downarrow}^{\dagger} + d_{k \downarrow}d_{k \uparrow}).
Thank you guys!
I consider a diagonalized Hamiltonian:
H=\sum\limits_{k} \underbrace{ (\epsilon_{k} u_{k}^2 -\epsilon_{k} v_{k}^2 -2\Delta u_{k} v_{k} )}_{E_{k}}(d_{k \uparrow}^{\dagger}d_{k \uparrow} + d_{k \downarrow}^{\dagger}d_{k \downarrow}) +const
with fermionic creation and annihilation operators.
From solution I know that: E_{k} =\sqrt{\Delta^2 +\epsilon_{k}^2} but how can I get this result?
Things I even know is that: u_k^2 + v_k^2 =1 and:
\sum\limits_k <br /> <br /> \underbrace{(<br /> -2\epsilon_k u_k v_k +\Delta v_k^2 -\Delta u_k ^2<br /> )}_{\stackrel{!}{=}0}<br /> <br /> (d_{k \uparrow}^{\dagger}d_{k \downarrow}^{\dagger} + d_{k \downarrow}d_{k \uparrow}).
Thank you guys!