I'm studying CFT, and I find the lecture notes and books really confusing and devoid of explanations (more details).
In a scale transformation ##x' = \lambda x##, the field ##\phi(x)## should also be affected by the scale transformation, i.e., ##\phi'(x') = \phi'(\lambda x) = \lambda^{-\Delta}...
Conformal field theory is way over my head at the moment, but I decided to "dip my toes into it," and I watched a little video talking about conformal transformations. Now, I know that in a conformal transformation, $$x^\mu \to x'^\mu ,$$ the metric must satisfy $$\Lambda (x) g_{\mu \nu} =...
Homework Statement
The exercise needs us to first show that ##P^2## (with ##P_\mu=i\partial_\mu##) is not a Casimir invariant of the Conformal group. From this, it wants us to deduce that only massless theories could be conformally invariant.
Homework Equations
The Attempt at a Solution
I...
I am confused about conformal transformations on Riemannian manifolds. Here's what I have so far.
1. Under a conformal transformation the metric changes by:
g' -> Ω2g
2. Under a Weyl transformation the metric changes by:
g' -> exp(-2f)g
3. Any 2D Riemann manifold is locally conformally...
Homework Statement
As the title says, I need to show this. A conformal transformation is made by changing the metric:
##g_{\mu\nu}\mapsto\omega(x)^{2}g_{\mu\nu}=\tilde{g}_{\mu\nu}##
Homework Equations
The Weyl tensor is given in four dimensions as:
##...
It is well known that from a two-dimensional solution of Laplace equation for a particular geometry, other solutions for other geometries can be obtained by making conformal transformations.
Now, I have a function defined on a disc centered at the origin and is given by
f(r) = a r
where a is...
Homework Statement
Find the infinitesimal dilation and conformal transformations and thereby show they are generated by ##D = ix^{\nu}\partial_{\nu}## and ##K_{\mu} = i(2x_{\mu}x^{\nu}\partial_{\nu} - x^2\partial_{\mu})##
The conformal algebra is generated via commutation relations of elements...
Hi all,
my question is rather a simple one and regards conformal transformations. On "Applied CFT" by P.Ginsparg, http://arxiv.org/pdf/hep-th/9108028.pdf , on page 10, gives the transformation rule of a quasi primary field and relates the exponent of 1.12 to the one of 1.10. My first question...
Conformal transformations as far as I knew are defined as g_{mn}\rightarrow g'_{mn}=\Omega g_{mn}.
Now I come across a new definition, such that a smooth mapping \phi:U\rightarrow V is called a conformal transformation if there exist a smooth function \Omega:U\rightarrow R_{+} such that...
A conformal transformation is a coordinate transformation that leaves the metric invariant up to a scale change g_{\mu\nu}(x) \to g'_{\mu\mu}(x)=\Omega(x)g_{\mu\nu}(x).
This means that the length of vectors is not preserved: g_{\mu\nu}x'^{\mu}x'^{\nu}\not=g_{\mu\nu}x^{\mu}x^{\nu}
But is...
Hello,
I read somewhere that in 2D, the Möbius transformations do not represent all the possible conformal transformations, while according to Liouville's theorem, in spaces of dimension greater than 2 all the conformal transformation can be expressed as combinations of...
While it's pretty easy to derive the infinitesimal version of the special conformal transformation of the coordinates:
x'^{\mu}=x^{\mu}+c_{\nu}(x^{\mu} x^{\nu}-g^{\mu \nu} x^2)
with c infinitesimal,
how does one integrate it to obtain the finite version transformation...