-1.5.7.9 find gereral solution to DE

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary
SUMMARY

The general solution to the differential equation \(y' + \frac{3}{x^2}y = 0\) is derived using the integrating factor method. The integrating factor is \(u(x) = e^{-\frac{3}{x}}\). The solution is expressed as \(y = Ce^{\frac{3}{x}}\), where \(C\) is a constant. The discussion highlights the importance of correctly applying the integrating factor and integrating both sides of the equation to arrive at the solution.

PREREQUISITES
  • Understanding of first-order linear differential equations
  • Familiarity with integrating factors in differential equations
  • Basic knowledge of exponential functions and their properties
  • Ability to perform integration and manipulate logarithmic expressions
NEXT STEPS
  • Study the method of integrating factors in greater detail
  • Explore additional examples of first-order linear differential equations
  • Learn about the applications of differential equations in real-world scenarios
  • Investigate advanced topics such as non-homogeneous differential equations
USEFUL FOR

Students and professionals in mathematics, physics, and engineering who are looking to deepen their understanding of differential equations and their solutions.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten
 
Physics news on Phys.org
You have misplaced the constant, c. It should also be in the exponential.

$\frac{dy}{dx}= -\frac{3}{x^2}y$
$\frac{dy}{y}= -\frac{3}{x^2}dx= -3x^{-2}dx$
Integrate both sides
$ln(y)= 3x^{-1}+ C= \frac{3}{x}+ C$
Take the exponential of both sides
$y= e^{\frac{3}{x}+ C}= e^Ce^{\frac{3}{x}}= C' e^{\frac{3}{x}}$
where $C'= e^C$.
 
karush said:
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten

Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
 
karush said:
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten

Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
 
Prove It said:
Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
yes,, I came close to this but got the product wrong...:unsure:
Mahalo
 

Similar threads

Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K