MHB -1.5.7.9 find gereral solution to DE

  • Thread starter Thread starter karush
  • Start date Start date
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten
 
Physics news on Phys.org
You have misplaced the constant, c. It should also be in the exponential.

$\frac{dy}{dx}= -\frac{3}{x^2}y$
$\frac{dy}{y}= -\frac{3}{x^2}dx= -3x^{-2}dx$
Integrate both sides
$ln(y)= 3x^{-1}+ C= \frac{3}{x}+ C$
Take the exponential of both sides
$y= e^{\frac{3}{x}+ C}= e^Ce^{\frac{3}{x}}= C' e^{\frac{3}{x}}$
where $C'= e^C$.
 
karush said:
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten

Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
 
karush said:
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten

Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
 
Prove It said:
Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
yes,, I came close to this but got the product wrong...:unsure:
Mahalo
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...

Similar threads

Back
Top