-1.5.7.9 find gereral solution to DE

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the general solution to the differential equation \(y' + \frac{3}{x^2}y = 0\). Participants explore various methods of solving this equation, including the use of integrating factors and integration techniques.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an initial attempt at the solution, suggesting \(u(x) = e^{\int \frac{3}{x^2} dx} = e^{-\frac{3}{x}} + c\), and expresses uncertainty about the need to rewrite the equation.
  • Another participant corrects the first by stating that the constant \(c\) should also be included in the exponential, leading to the expression \(y = C' e^{\frac{3}{x}}\) where \(C' = e^C\).
  • Several participants reiterate the use of integrating factors, showing the steps leading to the solution \(y = C e^{\frac{3}{x}}\) but do not clarify the initial steps or assumptions made in their calculations.
  • One participant acknowledges a mistake in their earlier approach and expresses gratitude for the clarification provided by others.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the initial formulation of the solution, with some correcting others' approaches. The discussion reflects multiple interpretations and methods for solving the differential equation.

Contextual Notes

Some participants express uncertainty about the necessity of rewriting the original equation, and there are variations in how constants are treated in the solutions presented.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten
 
Physics news on Phys.org
You have misplaced the constant, c. It should also be in the exponential.

$\frac{dy}{dx}= -\frac{3}{x^2}y$
$\frac{dy}{y}= -\frac{3}{x^2}dx= -3x^{-2}dx$
Integrate both sides
$ln(y)= 3x^{-1}+ C= \frac{3}{x}+ C$
Take the exponential of both sides
$y= e^{\frac{3}{x}+ C}= e^Ce^{\frac{3}{x}}= C' e^{\frac{3}{x}}$
where $C'= e^C$.
 
karush said:
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten

Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
 
karush said:
$\tiny{1.5.7.9}$

Find the general solution
$y'+\dfrac{3}{x^2}y=0$

$ u(x)=e^{\displaystyle\int \dfrac{3}{x^2} dx}=e^{-\dfrac{3}{x}}+c$

just seeing if this is started ok... not sure if the given eq should have been rewritten

Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
 
Prove It said:
Since you are trying to use an integrating factor...

$\displaystyle \begin{align*} \mathrm{e}^{-\frac{3}{x}}\,y' + \frac{3}{x^2}\,\mathrm{e}^{-\frac{3}{x}}\,y &= 0 \\
\left( \mathrm{e}^{-\frac{3}{x}}\,y \right) ' &= 0 \\
\mathrm{e}^{-\frac{3}{x}}\,y &= \int{0\,\mathrm{d}x} \\
\mathrm{e}^{-\frac{3}{x}}\,y &= C \\
y &= C\,\mathrm{e}^{\frac{3}{x}} \end{align*} $
yes,, I came close to this but got the product wrong...:unsure:
Mahalo
 

Similar threads

Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K