MHB -11.7.94 Find the rectangular equation

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Rectangular
Click For Summary
The discussion focuses on finding the rectangular equation for the polar curve defined by r = sin(θ + π/4). The transformation involves using trigonometric identities to express r in terms of x and y, ultimately leading to the equation x² + y² = (√2/2)(x + y). This simplifies to the standard form of a circle, resulting in the equation (x - √2/4)² + (y - √2/4)² = (1/2)². The conclusion emphasizes that the curve represents a circle in the Cartesian coordinate system.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{11.7.94 Kamahamai HS}$
Find the rectangular equation of the curve $r=\sin\left(\theta+\dfrac{\pi}{4}\right)$
$r=\sin \theta{\cos \dfrac{\pi}{4}
+{\cos \theta{\sin \dfrac{\pi}{4}}}}
=\sin \theta\left(\dfrac{\sqrt{2}}{2}\right)+\cos \theta\left(\dfrac{\sqrt{2}}{2}\right)
=\left(\dfrac{\sqrt{2}}{2}\right) (\sin \theta+\cos\theta)$

well so far anyway
Desmos plotted a circle
 
Mathematics news on Phys.org
$r = \dfrac{\sqrt{2}}{2}(\cos{t}+\sin{t})$

$r^2 = \dfrac{\sqrt{2}}{2}(r\cos{t}+r\sin{t})$

$x^2+y^2 = \dfrac{\sqrt{2}}{2}(x+y)$

which leads to …

$\left(x-\dfrac{\sqrt{2}}{4}\right)^2 + \left(y - \dfrac{\sqrt{2}}{4}\right)^2 = \left(\dfrac{1}{2}\right)^2$
 
so that's how you get a circle 🙄
https://dl.orangedox.com/QS7cBvdKw55RQUbliE
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
7
Views
2K
Replies
7
Views
1K
Replies
1
Views
8K
Replies
1
Views
1K
Replies
1
Views
1K