MHB -2.2.20 IVP interval....trig subst y^2(1-x^2)^{1/2} \,dy=\arcsin{x}\,dx

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Ivp
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
(a) find solution of initial value and (c) interval
$$\quad\displaystyle
y^2(1-x^2)^{1/2} \,dy = \arcsin{x}\,dx,
\quad y(0) = 1$$
separate
$$y^2 \,dy = \frac{\arcsin{x}}{(1-x^2)^{1/2}}\,dx,$$
Integrate
\begin{align*}
\int y^2 \,dy& = \int\frac{\arcsin{x}}{\sqrt{(1-x^2)}}\,dx,
\end{align*}
ok I assume a trig substitution to solvebook answer

20.png
 
Last edited:
Physics news on Phys.org
karush said:
(a) find solution of initial value and (c) interval
$$\quad\displaystyle
y^2(1-x^2)^{1/2} \,dy = \arcsin{x}\,dx,
\quad y(0) = 1$$
separate
$$y^2 \,dy = \frac{\arcsin{x}}{(1-x^2)^{1/2}}\,dx,$$
Integrate
\begin{align*}
\int y^2 \,dy& = \int\frac{\arcsin{x}}{\sqrt{(1-x^2)}}\,dx,
\end{align*}
ok I assume a trig substitution to solve

Yes, I would let:

$$\theta=\arcsin(x)\implies x=\sin(\theta)\implies dx=\cos(\theta)\,d\theta$$

And then we have after simplification, and using the given boundaries:

$$\int_1^y u^2\,du=\int_0^{\arcsin(x)} v\,dv$$

$$\frac{1}{3}(y^3-1)=\frac{1}{2}\arcsin^2(x)$$

$$y^3=\frac{3}{2}\arcsin^2(x)+1$$

$$y=\left(\frac{3}{2}\arcsin^2(x)+1\right)^{\Large\frac{1}{3}}$$
 
sure like the boundary method

most examples just plow thru another 5 tedious steps
 
karush said:
(a) find solution of initial value and (c) interval
$$\quad\displaystyle
y^2(1-x^2)^{1/2} \,dy = \arcsin{x}\,dx,
\quad y(0) = 1$$
separate
$$y^2 \,dy = \frac{\arcsin{x}}{(1-x^2)^{1/2}}\,dx,$$
Integrate
\begin{align*}
\int y^2 \,dy& = \int\frac{\arcsin{x}}{\sqrt{(1-x^2)}}\,dx,
\end{align*}
ok I assume a trig substitution to solvebook answer
$\displaystyle \int y^2 \, dy = \int \dfrac{\arcsin{x}}{\sqrt{(1-x^2)}} \, dx$

RHS ...

$u = \arcsin{x}$, $du = \dfrac{dx}{\sqrt{1-x^2}}$

$\displaystyle \int y^2 \, dy = \int u \, du$

$\dfrac{y^3}{3} = \dfrac{u^2}{2} + C$

$y(0) = 1 \implies u = 0 \implies C = \dfrac{1}{3}$ ...

$\dfrac{y^3}{3} = \dfrac{3u^2+2}{6}$

$y = \left[\dfrac{3(\arcsin{x})^2+2}{2}\right]^{1/3}$
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top