MHB -2.2.4 find general solution xy'+2y=e^x

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{find the general solution}$
$$xy'+2y=e^x$$
$\textsf{divide thru by x}$
$$y' +\frac{2}{x}y=\frac{e^x}{x}$$
$\textsf{Find u(x)}$
$$\displaystyle u(x)=\exp\int\frac{2}{x} \, dx=e^{\ln x^2}=x^2$$
$\textsf{so far anyway..}$
 
Last edited:
Physics news on Phys.org
karush said:
$\textsf{find the general solution}$
$$xy'+2y=e^x$$
$\textsf{divide thru by x}$
$$y' +\frac{2}{x}y=\frac{e^x}{x}$$
$\textsf{Find u(x)}$
$$\displaystyle u(x)=\exp\int\frac{2}{x} \, dx=e^{\ln x^2}=x^2$$
$\textsf{multiply thru with $x^2$}$
$x^2 y' +2xy=xe^x$
$(x^2 y)'=xe^x$
$\textsf{integrate}$
$\displaystyle x^2 y=\int xe^x \, dx =e^x(x-1)+c$
$\textsf{divide thru by $x^2$}$
$\displaystyle y=\frac{e^x}{x}-\frac{e^x}{x^2}+\frac{c}{x^2}$
hopefully
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top