206.07.05.88 Int rational expression

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expression Rational
Click For Summary
SUMMARY

The discussion centers on the integral \( I_{88} = \int \frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \). Participants explore various substitution methods, including \( u = (x+2) \) and \( u = \tan(\theta) \), to simplify the integral. The correct form of the integral is identified as \( \int \frac{1}{u\sqrt{u^2-1}} \, du \), leading to the final solution \( 2\arctan\left(x+2+\sqrt{(x+2)^2-1}\right) + C \). The discussion emphasizes the importance of accurate substitutions in integral calculus.

PREREQUISITES
  • Understanding of integral calculus
  • Familiarity with substitution methods in integration
  • Knowledge of hyperbolic functions and their derivatives
  • Ability to manipulate algebraic expressions under square roots
NEXT STEPS
  • Study advanced integration techniques, including trigonometric and hyperbolic substitutions
  • Learn about the properties of inverse trigonometric functions
  • Explore the application of integration in solving differential equations
  • Practice solving integrals involving square roots and rational expressions
USEFUL FOR

Students and professionals in mathematics, particularly those focusing on calculus, integral equations, and mathematical analysis. This discussion is beneficial for anyone looking to enhance their skills in solving complex integrals.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:
 
Physics news on Phys.org
karush said:
$\tiny{206.07.05.88}$
$\textit{so far ?}$:cool:
So far so good. :)

EDIT: See answer #7.
 
Last edited:
I tried next..

$u=tan\theta \therefore du = sec^2 \theta d\theta$

but it got difficult...
 
karush said:
I tried next..

$u=tan\theta \therefore du = sec^2 \theta d\theta$

but it got difficult...
Better, $t=\dfrac{1}{u}$. Then, $$\displaystyle\int\frac{1}{u\sqrt{u^2+1}} du =\ldots =-\int\frac{1}{\sqrt{t^2+1}} dt=\ldots $$

EDIT: See answer #7.
 
Last edited:
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:

Nope. You're ok up until

$$\int\frac{1}{u\sqrt{u^2+1}}\text{ d}u$$

That should be

$$\int\frac{1}{u\sqrt{u^2-1}}\text{ d}u$$

$$u=\cosh(z),\quad\text{ d}u=\sinh(z)\text{ d}z\quad z=\arcosh(u)$$

$$\int\frac{\sinh(z)}{\cosh(z)\sqrt{\cosh^2(z)-1}}\text{ d}z=\int\frac{1}{\cosh(z)}\text{ d}z$$

$$\int\frac{2}{e^z+e^{-z}}\text{ d}z=2\int\frac{e^z}{e^{2z}+1}\text{ d}z=2\arctan(e^z)+C$$

$$z=\arcosh(u)=\log\left(u+\sqrt{u^2-1}\right)$$

so, after back-subbing the rest of the way, we have

$$\int\frac{1}{(x+2)\sqrt{x^2+4x+3}}\text{ d}x=2\arctan\left(x+2+\sqrt{(x+2)^2-1}\right)+C$$
 
greg1313 said:
Nope. You're ok up until

$$\int\frac{1}{u\sqrt{u^2+1}}\text{ d}u$$
That should be
$$\int\frac{1}{u\sqrt{u^2-1}}\text{ d}u$$
Sorry, I had a distraction error. :)
 
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:

As has been pointed out, this should be

$\displaystyle \begin{align*} \int{ \frac{1}{u\,\sqrt{u^2 - 1}}\,\mathrm{d}u} \end{align*}$

From here

$\displaystyle \begin{align*} \int{ \frac{1}{u\,\sqrt{u^2 - 1}}\,\mathrm{d}u} &= \frac{1}{2} \int{ \frac{2\,u}{u^2\,\sqrt{u^2 - 1}} } \end{align*}$

Now let $\displaystyle \begin{align*} v = u^2 - 1 \implies \mathrm{d}v = 2\,u \end{align*}$ giving

$\displaystyle \begin{align*} \frac{1}{2}\int{ \frac{1}{\left( v + 1\right) \,\sqrt{v}}\,\mathrm{d}v } &= \int{ \frac{1}{\left[ \left( \sqrt{v} \right) ^2 + 1 \right]\,2\,\sqrt{v}}\,\mathrm{d}v } \end{align*}$

Now let $\displaystyle \begin{align*} w = \sqrt{v} \implies \mathrm{d}w = \frac{1}{2\,\sqrt{v}}\,\mathrm{d}v \end{align*}$ giving

$\displaystyle \begin{align*} \int{ \frac{1}{\left[ \left( \sqrt{v} \right) ^2 + 1 \right] \,2\,\sqrt{v}}\,\mathrm{d}v } &= \int{ \frac{1}{ w^2 + 1}\,\mathrm{d}w } \\ &= \arctan{ \left( w \right) } + C \\ &= \arctan{ \left( \sqrt{v} \right) } + C \\ &= \arctan{ \left( \sqrt{ u^2 - 1 } \right) } + C \\ &= \arctan{ \left[ \sqrt{ \left( x + 2 \right) ^2 - 1 } \right] } + C \end{align*}$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K