206.07.05.88 Int rational expression

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Expression Rational
Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the integral \( I_{88} = \int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \). Participants explore various substitution methods and transformations to simplify the integral, discussing both trigonometric and hyperbolic substitutions.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant begins with the substitution \( u = (x+2) \) and transforms the integral into \( I_{88} = \int\frac{1}{u\sqrt{u^2+1}} du \).
  • Another participant confirms the initial steps but points out an error in the integral, suggesting it should be \( \int\frac{1}{u\sqrt{u^2-1}} du \).
  • Several participants propose using trigonometric substitutions, such as \( u = \tan\theta \), but express difficulty in the process.
  • A later reply suggests a different substitution \( t = \frac{1}{u} \) and explores the resulting integral, leading to a transformation involving hyperbolic functions.
  • Further contributions refine the integral evaluation, with one participant detailing a series of substitutions leading to an expression involving \( \arctan \) and back-substituting to express the result in terms of \( x \).

Areas of Agreement / Disagreement

Participants generally agree on the initial steps of the integral evaluation but disagree on the correct form of the integral after the substitution. Multiple competing views on substitution methods and their effectiveness remain unresolved.

Contextual Notes

Some participants note distractions or errors in their previous contributions, indicating a need for careful attention to detail in the substitution process. The discussion includes various approaches that may depend on the participants' interpretations of the integral's form.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:
 
Physics news on Phys.org
karush said:
$\tiny{206.07.05.88}$
$\textit{so far ?}$:cool:
So far so good. :)

EDIT: See answer #7.
 
Last edited:
I tried next..

$u=tan\theta \therefore du = sec^2 \theta d\theta$

but it got difficult...
 
karush said:
I tried next..

$u=tan\theta \therefore du = sec^2 \theta d\theta$

but it got difficult...
Better, $t=\dfrac{1}{u}$. Then, $$\displaystyle\int\frac{1}{u\sqrt{u^2+1}} du =\ldots =-\int\frac{1}{\sqrt{t^2+1}} dt=\ldots $$

EDIT: See answer #7.
 
Last edited:
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:

Nope. You're ok up until

$$\int\frac{1}{u\sqrt{u^2+1}}\text{ d}u$$

That should be

$$\int\frac{1}{u\sqrt{u^2-1}}\text{ d}u$$

$$u=\cosh(z),\quad\text{ d}u=\sinh(z)\text{ d}z\quad z=\arcosh(u)$$

$$\int\frac{\sinh(z)}{\cosh(z)\sqrt{\cosh^2(z)-1}}\text{ d}z=\int\frac{1}{\cosh(z)}\text{ d}z$$

$$\int\frac{2}{e^z+e^{-z}}\text{ d}z=2\int\frac{e^z}{e^{2z}+1}\text{ d}z=2\arctan(e^z)+C$$

$$z=\arcosh(u)=\log\left(u+\sqrt{u^2-1}\right)$$

so, after back-subbing the rest of the way, we have

$$\int\frac{1}{(x+2)\sqrt{x^2+4x+3}}\text{ d}x=2\arctan\left(x+2+\sqrt{(x+2)^2-1}\right)+C$$
 
greg1313 said:
Nope. You're ok up until

$$\int\frac{1}{u\sqrt{u^2+1}}\text{ d}u$$
That should be
$$\int\frac{1}{u\sqrt{u^2-1}}\text{ d}u$$
Sorry, I had a distraction error. :)
 
karush said:
$\tiny{206.07.05.88}$
\begin{align*}
\displaystyle
I_{88}&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{x^2+4x+3+1-1}} \, dx \\
&=\int\frac{1}{(x+2)\sqrt{(x+2)^2-1}} \, dx \\
u&=(x+2) \therefore du=dx \\
I_{88}&=\int\frac{1}{u\sqrt{u^2+1}} du
\end{align*}

$\textit{so far ?}$:cool:

As has been pointed out, this should be

$\displaystyle \begin{align*} \int{ \frac{1}{u\,\sqrt{u^2 - 1}}\,\mathrm{d}u} \end{align*}$

From here

$\displaystyle \begin{align*} \int{ \frac{1}{u\,\sqrt{u^2 - 1}}\,\mathrm{d}u} &= \frac{1}{2} \int{ \frac{2\,u}{u^2\,\sqrt{u^2 - 1}} } \end{align*}$

Now let $\displaystyle \begin{align*} v = u^2 - 1 \implies \mathrm{d}v = 2\,u \end{align*}$ giving

$\displaystyle \begin{align*} \frac{1}{2}\int{ \frac{1}{\left( v + 1\right) \,\sqrt{v}}\,\mathrm{d}v } &= \int{ \frac{1}{\left[ \left( \sqrt{v} \right) ^2 + 1 \right]\,2\,\sqrt{v}}\,\mathrm{d}v } \end{align*}$

Now let $\displaystyle \begin{align*} w = \sqrt{v} \implies \mathrm{d}w = \frac{1}{2\,\sqrt{v}}\,\mathrm{d}v \end{align*}$ giving

$\displaystyle \begin{align*} \int{ \frac{1}{\left[ \left( \sqrt{v} \right) ^2 + 1 \right] \,2\,\sqrt{v}}\,\mathrm{d}v } &= \int{ \frac{1}{ w^2 + 1}\,\mathrm{d}w } \\ &= \arctan{ \left( w \right) } + C \\ &= \arctan{ \left( \sqrt{v} \right) } + C \\ &= \arctan{ \left( \sqrt{ u^2 - 1 } \right) } + C \\ &= \arctan{ \left[ \sqrt{ \left( x + 2 \right) ^2 - 1 } \right] } + C \end{align*}$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K