243.14.7.5 Find all local extreme values

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Local
Click For Summary
SUMMARY

The discussion focuses on finding local extreme values of the function \( f(x,y) = 2xy - 3x + 3y \). The critical point identified is \( (a,b) = \left(-\frac{3}{2}, \frac{3}{2}\right) \). Using the second partials test, it is determined that the function has a saddle point at this critical point, as \( D(a,b) = -4 < 0 \). The calculated value of the function at this point is \( f\left[-\frac{3}{2}, \frac{3}{2}\right] = \frac{9}{2} \).

PREREQUISITES
  • Understanding of partial derivatives and critical points
  • Familiarity with the second partials test for classifying extrema
  • Knowledge of saddle points in multivariable calculus
  • Ability to compute values of functions at given points
NEXT STEPS
  • Study the application of the second partials test in greater detail
  • Learn about different types of critical points in multivariable functions
  • Explore examples of functions with multiple critical points and their classifications
  • Investigate the implications of saddle points in optimization problems
USEFUL FOR

Students and professionals in mathematics, particularly those studying multivariable calculus, as well as anyone involved in optimization and analysis of functions of multiple variables.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{243.14.7.5}$

$\textsf{Find all local extreme values of the given function and identify each}$
$\textsf{as a local maximum,local minimum,or saddlepoint}$
$\textit{$f$ has a} \textbf{ saddle point } \textit{at $(a,b)$ if}$
\begin{align*} \displaystyle
f_{xx}f_{yy}-fxy^2&\ge 0 \text{ at } (a,b)
\end{align*}
\begin{align*} \displaystyle
f_5(x,y)&=2xy-3x+3y\\
f_x&=2y-3\\
f_y&=2x+3\\
f_x(3/2)&=2y-3=0\\
f_y(-3/2)&=2x+3=0\\
f\left[-\frac{3}{2},\frac{3}{2} \right]
&=2\left[-\frac{3}{2} \cdot \frac{3}{2} \right]
-3\left[-\frac{3}{2} \right]
+3\left[\frac{3}{2} \right]=\frac{9}{2}\\
f_{xx}&=2\\
f_{yy}&=2\\
f_{xx}f_{yy}&=2 \cdot 2-[2 \cdot 2]^2\\
&=4-16=-12 < 0
\end{align*}
\begin{align*} \displaystyle
\textit{Book Answer: }
f\left[-\frac{3}{2},\frac{3}{2} \right]&=\color{red}{\frac{9}{2}}
\textit{ ,Saddle point}
\end{align*}first time
so suggestions?
 
Physics news on Phys.org
We are given:

$$f(x,y)=2xy-3x+3y$$

Identify the critical point(s):

$$f_x(x,y)=2y-3=0\implies y=\frac{3}{2}$$

$$f_y(x,y)=2x+3=0\implies x=-\frac{3}{2}$$

And so our critical point is:

$$(a,b)=\left(-\frac{3}{2},\frac{3}{2}\right)$$

Now, according to the second partials test, we let:

$$D(x,y)=f_{xx}(x,y)f_{yy}(x,y)-\left[f_{xy}(x,y)\right]^2$$

And we find:

$$D(a,b)=0\cdot0-(2)^2=-4<0$$

Hence, we conclude that $f(a,b)$ is not an extremum (it is a saddle point).
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K