MHB (3+√a)^(1/3)+(3-√a)^(1/3) is an integer, find a

  • Thread starter Thread starter lfdahl
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The discussion focuses on finding positive values of \( a \) such that the expression \( \sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}} \) results in an integer. Various solutions and methods are proposed, including algebraic manipulations and alternative approaches to simplify the expression. Participants share their findings and verify each other's solutions, emphasizing the importance of integer results. The conversation highlights the mathematical principles involved in solving the problem. Ultimately, the goal is to identify all possible positive values of \( a \) that satisfy the condition.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Determine the positive numbers, $a$, such that the sum:

$$\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}$$

is an integer.
 
Mathematics news on Phys.org
lfdahl said:
Determine the positive numbers, $a$, such that the sum:

$$\sqrt[3]{3+\sqrt{a}}+\sqrt[3]{3-\sqrt{a}}$$

is an integer.
my solution:
let $\sqrt[3]{3+\sqrt{a}}=x$
$\sqrt[3]{3-\sqrt{a}}=y$
consider $x>0,y>0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=2\times 3=3\times 2=6\times 1=1\times 6$
now $x+y=2---(1)$
and $x^2-xy+y^2=3$ $\rightarrow xy=\dfrac {1}{3}---(2)$
satisfy the condition $a>0$
$x,y$ are roots of $3t^2-6t+1=0$
$x=\dfrac{3+\sqrt 6}{3}$
$y=\dfrac{3-\sqrt 6}{3}$
and we get :$a\approx 8.963$
if $x+y<0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=-2\times -3=-3\times -2=-6\times -1=-1\times -6$
with the same method we may get another "a" or no solution
 
Last edited:
Albert said:
my solution:
let $\sqrt[3]{3+\sqrt{a}}=x$
$\sqrt[3]{3-\sqrt{a}}=y$
consider $x>0,y>0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=2\times 3=3\times 2=6\times 1=1\times 6$
only $x+y=2---(1)$
and $x^2-xy+y^2=3$ $\rightarrow xy=\dfrac {1}{3}---(2)$
satisfy the condition $a>0$
$x,y$ are roots of $3t^2-6t+1=0$
$x=\dfrac{3+\sqrt 6}{3}$
$y=\dfrac{3-\sqrt 6}{3}$
and we get :$a\approx 8.963$
if $x+y<0$
$x^3+y^3=(x+y)(x^2-xy+y^2)=6=-2\times -3=-3\times -2=-6\times -1=-1\times -6$
with the same method we may get another "a" or no solution

Would you please show the other $a$ solution?
 
lfdahl said:
Would you please show the other $a$ solution?
another solution:
sorry another solution will happen at :
$x+y=1$ and
$x^2-xy+y^2=6,or \,\, 3xy=-5$
which gives $x=1.8844,or\, -0.8844$
both yield $a=13.63$
here ($\sqrt[3]{3+\sqrt a}=x$)
($\sqrt[3]{3-\sqrt a}=y$)
 
Last edited:
Albert said:
another solution:
sorry another solution will happen at :
$x+y=1$ and
$x^2-xy+y^2=6,or \,\, 3xy=-5$
which gives $x=1.8844,or\, -0.8844$
both yield $a=13.63$
here ($\sqrt[3]{3+\sqrt a}=x$)
($\sqrt[3]{3-\sqrt a}=y$)

Well done, thankyou Albert!An alternative approach can be found here:

Let \[n = \sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}, \: \: x >0.\]

Then

\[n^3 = 6+3n\left [ (3+\sqrt{x})(3-\sqrt{x})\right ]^{1/3}\]

Hence, \[\left ( \frac{n^3-6}{3n} \right )^3 = 9-x \Rightarrow x = 9 - \left ( \frac{n^3-6}{3n} \right )^3 > 0.\]

The term $\left ( \frac{n^3-6}{3n} \right )^3$ is monotone increasing and larger than $9$ for $n \ge 3$, so

it suffices to let $n$ be $1$ or $2$:$n = 1$: $x = \frac{368}{27} = 13,\overline{629}$.$n = 2$: $x = \frac{242}{27} = 8,\overline{962}$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
960
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K