- #1

- 63

- 0

## Main Question or Discussion Point

εHi,

Based on that hoary schematic cube representation in 3D for stress-strain relationship. Stress tensor {σxx, σyy, σzz, σxy, σyz, σzx} and strain tensors {εxx, εyy, εzz, εxy, εyz, εzx} can be written interchangably. Let's suppose that σzz=σzx=σzy=0 then the reamining terms are written in matrix form then how that E/(1-v

At first sight, is seems that its very simple to express it by multipliers but couldn't figured out .

Any help please,

Based on that hoary schematic cube representation in 3D for stress-strain relationship. Stress tensor {σxx, σyy, σzz, σxy, σyz, σzx} and strain tensors {εxx, εyy, εzz, εxy, εyz, εzx} can be written interchangably. Let's suppose that σzz=σzx=σzy=0 then the reamining terms are written in matrix form then how that E/(1-v

^{2}) coefficient is emerging.At first sight, is seems that its very simple to express it by multipliers but couldn't figured out .

Any help please,