MHB 4.1.26 graph of velocity over acceleration graph

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
View attachment 9254

ok not finding this easy but the red is mine drawn over the given book graph

also want to convert the whole thing to tikx graph
 

Attachments

  • 4_2_26.png
    4_2_26.png
    7.3 KB · Views: 123
Mathematics news on Phys.org
karush said:
ok not finding this easy but the red is mine drawn over the given book graph

also want to convert the whole thing to tikx graph

Is the problem's given acceleration graph the piece-wise linear graph in yellow?

Why the graph in red? What's its purpose?
 
Last edited by a moderator:
yes only the red in mine

we are asked to plot velocity(red) over the given graph of acceleration
 
for the given piece-wise linear acceleration graph in yellow, the velocity graph is as shown ...
 

Attachments

  • velocity_graf.jpg
    velocity_graf.jpg
    37.2 KB · Views: 113
karush said:
ok not finding this easy but the red is mine drawn over the given book graph

also want to convert the whole thing to tikx graph

We can do for instance:
\begin{tikzpicture}[xscale=.3, >=stealth]
\draw[ystep=0.5,help lines] (0,-2.5) grid (45,2.5);
\draw[->] (-2,0) -- (47,0) node
{(s)};
\draw[->] (0,-2.4) -- (0,2.9) node[above] {$a$ (m/s$^2$)};
\draw
foreach \i in {5,10,...,45} { (\i,0.1) -- (\i,-0.1) node[below] {$\i$} }
foreach \i in {-2,2} { (0.3,\i) -- (-0.3,\i) node
{$\i$} }
(0,0) node[below left] {$0$};
\draw[red, ultra thick]
(5,2) parabola (0,0)
(5,2) parabola (10,0)
(15,-2) parabola (10,0)
(15,-2) -- (25,-2)
(25,-2) parabola (30,0)
(35,2) parabola (30,0)
(35,2) -- (40,2)
(40,2) parabola (45,0);
\end{tikzpicture}

I guess we still need to add the velocity graph.
For the section up to 10 seconds, we have the parabola given by:
$$a(t) = 2 - \frac{2}{25}(t-5)^2 = -\frac{2}{25}t^2+\frac 45 t$$
Integrate it, to find:
$$v(t) = \int_0^t a(t)\,dt = \int_0^t \left[-\frac{2}{25}t^2+\frac 45 t\right]dt
= \left[-\frac{2}{3\cdot 25}t^3 + \frac 25 t^2\right]_0^t = -\frac{2}{75}t^3 + \frac 25 t^2$$

Putting it in a graph, we get:
\begin{tikzpicture}[xscale=.3, yscale=.3, >=stealth]
\draw[help lines] (0,-2.5) grid (45,15);
\draw[->] (-2,0) -- (47,0) node
{(s)};
\draw[->] (0,-2.4) -- (0,15.9) node[above] {$v$ (m/s)};
\draw
foreach \i in {5,10,...,45} { (\i,0.3) -- (\i,-0.3) node[below] {$\i$} }
foreach \i in {-2,5,10,15} { (0.3,\i) -- (-0.3,\i) node
{$\i$} }
(0,0) node[below left] {$0$};
\draw[cyan, ultra thick] plot[domain=0:10, variable=\t] (\t, {-(2/75)*\t^3 + (2/5)*\t^2 });
\end{tikzpicture}

Repeat to find the later sections...
And integrate again to find the x graph...​
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top