MHB 7.t.27 Write an equation for a sinusoidal graph with the following properties:

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{7.t.27}$
$\textsf{Write an equation for a sinusoidal graph with the following properties:}\\$
$$A=-3,
\textsf{Period}=\frac{2\pi}{3},
\textsf{Phase Shift}=-\frac{\pi}{4}$$
\begin{align*}\displaystyle
A&=-3\\
T&=\frac{2\pi}{3}=\frac{2\pi}{\omega}\\
\omega&=3\\
PS&=-\frac{\pi}{4}=\frac{\phi}{\omega}\\
\phi&=\pi
\end{align*}
\begin{align*}\displaystyle
y_{27}&=A\sin{\left[\omega\left(x-\frac{\phi}{\omega} \right)\right]}
\end{align*}
$\textit{so then}$
\begin{align*}\displaystyle
Y_{27}&=-3\sin{\left[3\left(x-\frac{\pi}{12} \right)\right]}
\end{align*}

hopefully:confused:
 
Mathematics news on Phys.org
The amplitude of a sinusoidal function is one-half the vertical distance between the minimum and maximum, and so should never given as a negative value. Given:

$$y=A\sin\left(\omega(x-\phi)\right)\tag{1}$$

The amplitude is then $|A|$. Thus, both of the following have an amplitude of 3 units:

$$y=3\sin(x)$$

$$y=-3\sin(x)$$

You have the correct angular velocity $\omega$, but in (1) the phase shift is $\phi$ and so $\phi$ will have the opposite sign of the value given for the phase shift:

$$y=3\sin\left(3\left(x-\left(-\frac{\pi}{4}\right)\right)\right)=3\sin\left(3\left(x+\frac{\pi}{4}\right)\right)$$
 
View attachment 6987

here is what was given...
 

Attachments

  • mhb.png.png
    mhb.png.png
    5.4 KB · Views: 114
karush said:
here is what was given...

My mind must've been on something other than this problem when I posted last night...$A=-3$ is not saying the amplitude is -3...so what I would give is:

$$y=-3\sin\left(3\left(x+\frac{\pi}{4}\right)\right)$$

Sorry for the confusion. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
7
Views
1K
Replies
4
Views
11K
Replies
1
Views
11K
Back
Top