A counter-example to the Gelfond–Schneider theorem

  • Context: Graduate 
  • Thread starter Thread starter n_kelthuzad
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
SUMMARY

The discussion centers on a counter-example to the Gelfond–Schneider theorem, specifically examining the expression (-1)^e, where e is a transcendental number. The analysis reveals that traditional rules for exponentiation with negative bases do not apply when the exponent is transcendental. Two conjectures arise: either (-1)^e results in complex values (1, -1, i, or -i) or the expression is undefined. The implications suggest a paradox regarding the transcendental nature of (-e)^e and e^e if the Gelfond–Schneider theorem holds true.

PREREQUISITES
  • Understanding of the Gelfond–Schneider theorem
  • Familiarity with transcendental numbers and their properties
  • Knowledge of complex numbers and exponentiation rules
  • Basic grasp of Euler's formula and its applications
NEXT STEPS
  • Explore the implications of the Gelfond–Schneider theorem in depth
  • Study the properties of transcendental numbers, focusing on examples like e
  • Investigate complex exponentiation and its graphical representations
  • Learn more about Euler's formula and its significance in complex analysis
USEFUL FOR

Mathematicians, students of advanced mathematics, and anyone interested in the complexities of transcendental numbers and their implications in number theory.

n_kelthuzad
Messages
26
Reaction score
0
Gelfond–Schneider theorem can be seen here(http://en.wikipedia.org/wiki/Gelfond's_theorem) wiki.
----------------------------------------------------------------------------------
Given a simple calculation:
a^b
where a<0;
and let b be a fraction : u/v
so there are 3 possible ways of u and v s' arrangement:
I. u even, v odd
II. u odd, v odd
III. u odd, v even.
in I, a^b>0
in II, a^b<0
in III, a^b is a complex number.​
then the part of my study kicks in:
So what happens when b is a transcedental number?
since b is transcedental;
it no longer can be described as a fraction.
so the above 3 rules doesn't apply.
So I pick one of the most common transcedental numbers for b : b = e
and (-1) for a.
so the equation is: (-1)^e
it is known that e=1+1/1!+1/2!=1/3!+...
so it becomes: (-1)^1*(-1)^1*(-1)^(1/2)*(-1)^(1/6)...
and for all exponents starting from the 3rd one: the above (III) rule applys.
so the answer to the equation is : -1*-1*i*i*i...
=i^∞
(so this is what I was working up to now)
so there can be 2 conjectures:
1. (-1)^e = 1 or -1 or i or -i
2. the equation is undefined.
but either way, we will just leave it alone for a moment.
------------------------------------------------------------------------
If the Gelfond–Schneider theorem is true:
then (-e)^e must be transcendental.
and (-e)^e is equal to [(-1)^e]*[e^e]
still if the theorem is true; e^e must be transcendental.
then assume 1 from the above conjecture is true:
there are 2 complex answers of (-e)^e
or assume 2 is true:
(-e)^e is undefined
so clearly either way, it is a paradox.


By Victor Lu, 16
Burnside High School, Christchurch, NZ
496200691@qq.com
 
Mathematics news on Phys.org
n_kelthuzad said:
Gelfond–Schneider theorem can be seen here(http://en.wikipedia.org/wiki/Gelfond's_theorem) wiki.
----------------------------------------------------------------------------------
Given a simple calculation:
a^b
where a<0;
and let b be a fraction : u/v
so there are 3 possible ways of u and v s' arrangement:
I. u even, v odd
II. u odd, v odd
III. u odd, v even.
in I, a^b>0
in II, a^b<0
in III, a^b is a complex number.​
then the part of my study kicks in:
So what happens when b is a transcedental number?
since b is transcedental;
it no longer can be described as a fraction.
so the above 3 rules doesn't apply.
So I pick one of the most common transcedental numbers for b : b = e
and (-1) for a.
so the equation is: (-1)^e
it is known that e=1+1/1!+1/2!=1/3!+...
so it becomes: (-1)^1*(-1)^1*(-1)^(1/2)*(-1)^(1/6)...
and for all exponents starting from the 3rd one: the above (III) rule applys.
so the answer to the equation is : -1*-1*i*i*i...
=i^∞
(so this is what I was working up to now)
so there can be 2 conjectures:
1. (-1)^e = 1 or -1 or i or -i
2. the equation is undefined.
but either way, we will just leave it alone for a moment.
------------------------------------------------------------------------
If the Gelfond–Schneider theorem is true:
then (-e)^e must be transcendental.
and (-e)^e is equal to [(-1)^e]*[e^e]
still if the theorem is true; e^e must be transcendental.
then assume 1 from the above conjecture is true:
there are 2 complex answers of (-e)^e
or assume 2 is true:
(-e)^e is undefined
so clearly either way, it is a paradox.


By Victor Lu, 16
Burnside High School, Christchurch, NZ
496200691@qq.com

Hey n_kelthuzad and welcome to the forums.

It might help you to realize the following identity:

Consider the same c = a^b number. If a < 0 then we can write this number as:

c = a^b = |a|^b x e^(ib) where |a| is the absolute value of a and y is known as the argument of the complex number which is given by calculating:

The way you can interpret is that if you graph two functions corresponding to the real part of c and the imaginary part, then you'll get something that looks like a wave but it will either keep increasing or decreasing as the b value increases. I'm assuming also that b is a real number.

If you are having trouble, then a normal sine or cosine wave is when a = -1. If -1 < a < 0 then the peak and the trough of the wave will go towards the x-axis as b goes to infinity. If a < -1 then the peak and the trough will go towards infinity.
 
chiro said:
Consider the same c = a^b number. If a < 0 then we can write this number as:

c = a^b = |a|^b x e^(ib) where |a| is the absolute value of a and y is known as the argument of the complex number which is given by calculating:

The way you can interpret is that if you graph two functions corresponding to the real part of c and the imaginary part, then you'll get something that looks like a wave but it will either keep increasing or decreasing as the b value increases. I'm assuming also that b is a real number.

If you are having trouble, then a normal sine or cosine wave is when a = -1. If -1 < a < 0 then the peak and the trough of the wave will go towards the x-axis as b goes to infinity. If a < -1 then the peak and the trough will go towards infinity.

c = a^b = |a|^b x e^(ib) ?

so if a= -1, b=2 c=1; then |-1|^2*e^(2i) = e^2i?
i suppose that can only be e^2i∏ which equals to 1.
and what's this formula called?
 
n_kelthuzad said:
c = a^b = |a|^b x e^(ib) ?

so if a= -1, b=2 c=1; then |-1|^2*e^(2i) = e^2i?
i suppose that can only be e^2i∏ which equals to 1.
and what's this formula called?
e^(ix) = cos(x) + i sin(x) where i is the square root of -1. In other words i = SQRT(-1) and i^2 = -1.

Here is some more information:

http://en.wikipedia.org/wiki/Euler's_formula
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K